
Cecilia Gotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/171575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of a dual mechanism of action underlying the anti-proliferative and cytotoxic effects of ammonium-alkyloxy-stilbene-based α7- and α9-nicotinic ligands on glioblastoma cells. Pharmacological Research, 2022, 175, 105959.	7.1	9
2	From 2-Triethylammonium Ethyl Ether of 4-Stilbenol (MG624) to Selective Small-Molecule Antagonists of Human α9α10 Nicotinic Receptor by Modifications at the Ammonium Ethyl Residue. Journal of Medicinal Chemistry, 2022, 65, 10079-10097.	6.4	9
3	Choline and nicotine increase glioblastoma cell proliferation by binding and activating α7- and α9- containing nicotinic receptors. Pharmacological Research, 2021, 163, 105336.	7.1	30
4	Altered mRNA Levels of Stress-Related Peptides in Mouse Hippocampus and Caudate-Putamen in Withdrawal after Long-Term Intermittent Exposure to Tobacco Smoke or Electronic Cigarette Vapour. International Journal of Molecular Sciences, 2021, 22, 599.	4.1	9
5	A Conserved Arginine with Non-Conserved Function is a Key Determinant of Agonist Selectivity in Alpha7 Nicotinic Acetylcholine Receptors. Biophysical Journal, 2021, 120, 55a-56a.	0.5	0
6	A conserved arginine with nonâ€conserved function is a key determinant of agonist selectivity in α7 nicotinic ACh receptors. British Journal of Pharmacology, 2021, 178, 1651-1668.	5.4	6
7	Cytisine and cytisine derivatives. More than smoking cessation aids. Pharmacological Research, 2021, 170, 105700.	7.1	26
8	Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine withdrawal in zebrafish and mammals. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 111, 110334.	4.8	8
9	α9-Containing Nicotinic Receptors in Cancer. Frontiers in Cellular Neuroscience, 2021, 15, 805123.	3.7	8
10	Modifications at C(5) of 2-(2-Pyrrolidinyl)-Substituted 1,4-Benzodioxane Elicit Potent α4β2 Nicotinic Acetylcholine Receptor Partial Agonism with High Selectivity over the α3β4 Subtype. Journal of Medicinal Chemistry, 2020, 63, 15668-15692.	6.4	12
11	Persistent cognitive and affective alterations at late withdrawal stages after long-term intermittent exposure to tobacco smoke or electronic cigarette vapour: Behavioural changes and their neurochemical correlates. Pharmacological Research, 2020, 158, 104941.	7.1	12
12	Behavioural and pharmacological profiles of zebrafish administrated pyrrolidinyl benzodioxanes and prolinol aryl ethers with high affinity for heteromeric nicotinic acetylcholine receptors. Psychopharmacology, 2020, 237, 2317-2326.	3.1	11
13	Novel N-aryl nicotinamide derivatives: Taking stock on 3,6-diazabicyclo[3.1.1]heptanes as ligands for neuronal acetylcholine receptors. European Journal of Medicinal Chemistry, 2019, 180, 51-61.	5.5	3
14	CHRNA2 and Nocturnal Frontal Lobe Epilepsy: Identification and Characterization of a Novel Loss of Function Mutation. Frontiers in Molecular Neuroscience, 2019, 12, 17.	2.9	20
15	The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons. Biochemical Pharmacology, 2019, 163, 154-168.	4.4	14
16	Increased sensitivity to Δ9-THC-induced rewarding effects after seven-week exposure to electronic and tobacco cigarettes in mice. European Neuropsychopharmacology, 2019, 29, 566-576.	0.7	14
17	Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling andÂβ1â€integrin. EMBO Journal, 2019, 38, .	7.8	42
18	Preoperative administration of the 5-HT4 receptor agonist prucalopride reduces intestinal inflammation and shortens postoperative ileus via cholinergic enteric neurons. Gut, 2019, 68, 1406-1416.	12.1	69

#	Article	IF	CITATIONS
19	Nicotinic acetylcholine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	4
20	Pyridinyl- and pyridazinyl-3,6-diazabicyclo[3.1.1]heptane-anilines: Novel selective ligands with subnanomolar affinity for α4β2 nACh receptors. European Journal of Medicinal Chemistry, 2018, 152, 401-416.	5.5	8
21	Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update. British Journal of Pharmacology, 2018, 175, 1869-1879.	5.4	27
22	The alpha-7 nicotinic acetylcholine receptor is involved in a direct inhibitory effect of nicotine on GnRH release: InÂvitro studies. Molecular and Cellular Endocrinology, 2018, 460, 209-218.	3.2	8
23	α9―and α7â€containing receptors mediate the proâ€proliferative effects of nicotine in the A549 adenocarcinoma cell line. British Journal of Pharmacology, 2018, 175, 1957-1972.	5.4	61
24	Reduced α4 subunit expression in α4 ^{+â^'} and α4 ^{+â^'} /β2 ^{+â^'} nicotinic acetylcholine receptors alters α4β2 subtype upâ€regulation following chronic nicotine treatment. British Journal of Pharmacology, 2018, 175, 1944-1956.	5.4	8
25	Potent Antiglioblastoma Agents by Hybridizing the Onium-Alkyloxy-Stilbene Based Structures of an α7-nAChR, α9-nAChR Antagonist and of a Pro-Oxidant Mitocan. Journal of Medicinal Chemistry, 2018, 61, 10531-10544.	6.4	21
26	Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus. European Journal of Neuroscience, 2018, 48, 1600-1619.	2.6	15
27	A Small Library of 1,2,3â€Triazole Analogs of <scp>CAP</scp> â€55: Synthesis and Binding Affinity at Nicotinic Acetylcholine Receptors. Chemistry and Biodiversity, 2018, 15, e1800210.	2.1	5
28	lridium-Catalysed C–H Borylation of 2-Pyridones; Bisfunctionalisation of CC4. Synthesis, 2018, 50, 3420-3429.	2.3	6
29	The fifth subunit in α3β4 nicotinic receptor is more than an accessory subunit. FASEB Journal, 2018, 32, 4190-4202.	0.5	8
30	Unlocking Nicotinic Selectivity via Direct C‒H Functionalization of (â^')-Cytisine. CheM, 2018, 4, 1710-1725.	11.7	31
31	Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Current Neuropharmacology, 2018, 16, 338-349.	2.9	172
32	Multitarget drug design strategy in Alzheimer's disease: focus on cholinergic transmission and amyloid-l ² aggregation. Future Medicinal Chemistry, 2017, 9, 953-963.	2.3	19
33	From pyrrolidinyl-benzodioxane to pyrrolidinyl-pyridodioxanes, or from unselective antagonism to selective partial agonism at α4β2 nicotinic acetylcholine receptor. European Journal of Medicinal Chemistry, 2017, 125, 1132-1144.	5.5	15
34	In <i>vivo</i> study of the role of α6â€containing nicotinic acetylcholine receptor in retinal function using subtypeâ€specific RDPâ€MII(E11R) toxin. FASEB Journal, 2017, 31, 192-202.	0.5	2
35	Nicotine inside neurons. Oncotarget, 2016, 7, 81977-81978.	1.8	1
36	InÂvivo chronic nicotine exposure differentially and reversibly affects upregulation and stoichiometry of α4β2 nicotinic receptors in cortex and thalamus. Neuropharmacology, 2016, 108, 324-331.	4.1	27

#	Article	IF	CITATIONS
37	Novel 5-substituted 3-hydroxyphenyl and 3-nitrophenyl ethers of S -prolinol as α4β2-nicotinic acetylcholine receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5613-5617.	2.2	7
38	Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacological Research, 2016, 103, 167-176.	7.1	32
39	Modification of the anabaseine pyridine nucleus allows achieving binding and functional selectivity for the α3β4 nicotinic acetylcholine receptor subtype. European Journal of Medicinal Chemistry, 2016, 108, 392-405.	5.5	14
40	Antagonism of the Prokineticin System Prevents and Reverses Allodynia and Inflammation in a Mouse Model of Diabetes. PLoS ONE, 2016, 11, e0146259.	2.5	27
41	Neuronal Acetylcholine Nicotinic Receptors as New Targets for Lung Cancer Treatment. Current Pharmaceutical Design, 2016, 22, 2160-2169.	1.9	26
42	Synthesis and Pharmacological Evaluation of α ₄ β ₂ Nicotinic Ligands with a 3â€Fluoropyrrolidine Nucleus. ChemMedChem, 2015, 10, 1071-1078.	3.2	2
43	A Promising PET Tracer for Imaging of α7 Nicotinic Acetylcholine Receptors in the Brain: Design, Synthesis, and in Vivo Evaluation of a Dibenzothiophene-Based Radioligand. Molecules, 2015, 20, 18387-18421.	3.8	13
44	Structure of Neuronal Nicotinic Receptors. Current Topics in Behavioral Neurosciences, 2015, 23, 1-17.	1.7	39
45	Bifunctional compounds targeting both D2 and non-α7 nACh receptors: Design, synthesis and pharmacological characterization. European Journal of Medicinal Chemistry, 2015, 101, 367-383.	5.5	12
46	Design of novel 3,6-diazabicyclo[3.1.1]heptane derivatives with potent and selective affinities for α4β2 neuronal nicotinic acetylcholine receptors. European Journal of Medicinal Chemistry, 2015, 103, 429-437.	5.5	5
47	Chemistry and Pharmacology of a Series of Unichiral Analogues of 2-(2-Pyrrolidinyl)-1,4-benzodioxane, Prolinol Phenyl Ether, and Prolinol 3-Pyridyl Ether Designed as α4β2-Nicotinic Acetylcholine Receptor Agonists. Journal of Medicinal Chemistry, 2015, 58, 6665-6677.	6.4	24
48	Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology, 2015, 96, 302-311.	4.1	209
49	Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Progress in Neurobiology, 2015, 124, 1-27.	5.7	81
50	Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption. Frontiers in Human Neuroscience, 2014, 8, 12.	2.0	35
51	The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology, 2014, 231, 4681-4693.	3.1	28
52	Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacology, 2014, 231, 1975-1985.	3.1	61
53	The Novel <i>α</i> ₇ <i>β</i> ₂ -Nicotinic Acetylcholine Receptor Subtype Is Expressed in Mouse and Human Basal Forebrain: Biochemical and Pharmacological Characterization. Molecular Pharmacology, 2014, 86, 306-317.	2.3	68
54	Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochemical Pharmacology, 2013, 86, 1063-1073.	4.4	90

#	Article	IF	CITATIONS
55	Design, synthesis and binding affinity of acetylcholine carbamoyl analogues. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6481-6485.	2.2	4
56	Investigating the hydrogen-bond acceptor site of the nicotinic pharmacophore model: a computational and experimental study using epibatidine-related molecular probes. Journal of Computer-Aided Molecular Design, 2013, 27, 975-987.	2.9	7
57	Nicotine-induced subunit stoichiometry affects the stability and intracellular trafficking of α3β4 nicotinic receptors. Biochemical Pharmacology, 2013, 86, 1225-1226.	4.4	0
58	<scp>CC</scp> 4, a dimer of cytisine, is a selective partial agonist at α4β2/α6β2 <scp>nAChR</scp> with improved selectivity for tobacco smoking cessation. British Journal of Pharmacology, 2013, 168, 835-849.	5.4	31
59	(+)-Laburnamine, a Natural Selective Ligand and Partial Agonist for the α4β2 Nicotinic Receptor Subtype. Journal of Natural Products, 2013, 76, 727-731.	3.0	14
60	Nicotine-Modulated Subunit Stoichiometry Affects Stability and Trafficking of Â3Â4 Nicotinic Receptor. Journal of Neuroscience, 2013, 33, 12316-12328.	3.6	49
61	Adolescent nicotine exposure transiently increases highâ€affinity nicotinic receptors and modulates inhibitory synaptic transmission in rat medial prefrontal cortex. FASEB Journal, 2012, 26, 1810-1820.	0.5	38
62	Visual Acuity Is Reduced in ΑIpha 7 Nicotinic Receptor Knockout Mice. , 2012, 53, 1211.		28
63	The enantiomers of epiboxidine and of two related analogs: Synthesis and estimation of their binding affinity at α4β2 and α7 neuronal nicotinic acetylcholine receptors. Chirality, 2012, 24, 543-551.	2.6	5
64	Synthesis and binding affinity at α4β2 and α7 nicotinic acetylcholine receptors of new analogs of epibatidine and epiboxidine containing the 7-azabicyclo[2.2.1]hept-2-ene ring system. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 829-832.	2.2	11
65	Unichiral 2-(2′-Pyrrolidinyl)-1,4-benzodioxanes: the 2 <i>R</i> ,2′ <i>S</i> Diastereomer of the <i>N</i> -Methyl-7-hydroxy Analogue Is a Potent α4β2- and α6β2-Nicotinic Acetylcholine Receptor Partial Agonist. Journal of Medicinal Chemistry, 2011, 54, 7588-7601.	6.4	26
66	Stable expression and functional characterization of a human nicotinic acetylcholine receptor with α6β2 properties: discovery of selective antagonists. British Journal of Pharmacology, 2011, 163, 313-329.	5.4	33
67	Lack of dystrophin functionally affects α3β2/β4-nicotinic acethylcholine receptors in sympathetic neurons of dystrophic mdx mice. Neurobiology of Disease, 2011, 41, 528-537.	4.4	9
68	Expression of the α7 nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS. Journal of Neuroimmunology, 2011, 230, 74-84.	2.3	48
69	New spirocyclic Δ2-isoxazoline derivatives related to selective agonists of α7 neuronal nicotinic acetylcholine receptors. European Journal of Medicinal Chemistry, 2011, 46, 5790-5799.	5.5	12
70	Design, Synthesis, and Pharmacological Characterization of Novel Spirocyclic Quinuclidinylâ€Î" ² â€Isoxazoline Derivatives as Potent and Selective Agonists of α7 Nicotinic Acetylcholine Receptors. ChemMedChem, 2011, 6, 889-903.	3.2	32
71	Engineering of αâ€conotoxin Mllâ€derived peptides with increased selectivity for native α6β2 â^— nicotinic acetylcholine receptors. FASEB Journal, 2011, 25, 3775-3789.	0.5	32
72	Novel tricyclic Δ2-isoxazoline and 3-oxo-2-methyl-isoxazolidine derivatives: Synthesis and binding affinity at neuronal nicotinic acetylcholine receptor subtypes. Bioorganic and Medicinal Chemistry, 2010, 18, 4498-4508.	3.0	16

#	Article	IF	CITATIONS
73	A Comparative Study of the Effects of the Intravenous Self-Administration or Subcutaneous Minipump Infusion of Nicotine on the Expression of Brain Neuronal Nicotinic Receptor Subtypes. Molecular Pharmacology, 2010, 78, 287-296.	2.3	51
74	Cortico-Thalamic Connectivity is Vulnerable to Nicotine Exposure During Early Postnatal Development through α4/β2/α5 Nicotinic Acetylcholine Receptors. Neuropsychopharmacology, 2010, 35, 2324-2338.	5.4	57
75	Nicotinic Acetylcholine Receptors in the Mesolimbic Pathway: Primary Role of Ventral Tegmental Area α6β2* Receptors in Mediating Systemic Nicotine Effects on Dopamine Release, Locomotion, and Reinforcement. Journal of Neuroscience, 2010, 30, 5311-5325.	3.6	208
76	Synthesis of novel chiral Δ2-isoxazoline derivatives related to ABT-418 and estimation of their affinity at neuronal nicotinic acetylcholine receptor subtypes. European Journal of Medicinal Chemistry, 2010, 45, 5594-5601.	5.5	13
77	Peptide Microarrays on Coated Silicon Slides for Highly Sensitive Antibody Detection. Methods in Molecular Biology, 2010, 669, 147-160.	0.9	5
78	Rodent Habenulo–Interpeduncular Pathway Expresses a Large Variety of Uncommon nAChR Subtypes, But Only the α3β4 and α3β3β4 Subtypes Mediate Acetylcholine Release. Journal of Neuroscience, 2009, 29, 2272-2282.	3.6	205
79	Expression of mutant β2 nicotinic receptors during development is crucial for epileptogenesis. Human Molecular Genetics, 2009, 18, 1075-1088.	2.9	37
80	Structural and functional diversity of native brain neuronal nicotinic receptors. Biochemical Pharmacology, 2009, 78, 703-711.	4.4	422
81	New Analogues of Epiboxidine Incorporating the 4,5â€Dihydroisoxazole Nucleus: Synthesis, Binding Affinity at Neuronal Nicotinic Acetylcholine Receptors, and Molecular Modeling Investigations. Chemistry and Biodiversity, 2009, 6, 244-259.	2.1	13
82	α7 and nonâ€Î±7 nicotinic acetylcholine receptors modulate dopamine release <i>in vitro</i> and <i>in vivo</i> in the rat prefrontal cortex. European Journal of Neuroscience, 2009, 29, 539-550.	2.6	121
83	5-(2-Pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes: Synthesis of all the stereoisomers and α4β2 nicotinic affinity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 854-859.	2.2	18
84	Design of novel α7-subtype-preferring nicotinic acetylcholine receptor agonists: Application of docking and MM-PBSA computational approaches, synthetic and pharmacological studies. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6353-6357.	2.2	29
85	High Sensitivity Protein Assays on Microarray Silicon Slides. Analytical Chemistry, 2009, 81, 5197-5203.	6.5	75
86	Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology, 2009, 56, 237-246.	4.1	383
87	Synthesis, Binding, and Modeling Studies of New Cytisine Derivatives, as Ligands for Neuronal Nicotinic Acetylcholine Receptor Subtypes. Journal of Medicinal Chemistry, 2009, 52, 4345-4357.	6.4	40
88	Competitive Potentiation of Acetylcholine Effects on Neuronal Nicotinic Receptors by Acetylcholinesterase-Inhibiting Drugs. Journal of Neurochemistry, 2008, 75, 2492-2500.	3.9	58
89	Epiboxidine and novel-related analogues: A convenient synthetic approach and estimation of their affinity at neuronal nicotinic acetylcholine receptor subtypes. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4651-4654.	2.2	28
90	Synthesis of 3,6-diazabicyclo[3.1.1]heptanes as novel ligands for neuronal nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6147-6150.	2.2	10

#	Article	IF	CITATIONS
91	Partial Deletion of the Nicotinic Cholinergic Receptor α4 or β2 Subunit Genes Changes the Acetylcholine Sensitivity of Receptor-Mediated ⁸⁶ Rb ⁺ Efflux in Cortex and Thalamus and Alters Relative Expression of α4 and β2 Subunits. Molecular Pharmacology, 2008, 73, 1796-1807.	2.3	64
92	Reciprocal Regulation of Dopamine D1 and D3 Receptor Function and Trafficking by Heterodimerization. Molecular Pharmacology, 2008, 74, 59-69.	2.3	195
93	Heterogeneity and complexity of native brain nicotinic receptors. Biochemical Pharmacology, 2007, 74, 1102-1111.	4.4	260
94	Regulation of neuronal nicotinic receptor traffic and expression. Brain Research Reviews, 2007, 55, 134-143.	9.0	81
95	Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends in Pharmacological Sciences, 2006, 27, 482-491.	8.7	782
96	Synthesis and α4β2 nicotinic affinity of unichiral 5-(2-pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5610-5615.	2.2	19
97	Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer's disease, Parkinson's disease and dementia with Lewy bodies by immunoprecipitation. Neurobiology of Disease, 2006, 23, 481-489.	4.4	105
98	Long-term exposure to the new nicotinic antagonist 1,2-bisN -cytisinylethane upregulates nicotinic receptor subtypes of SH-SY5Y human neuroblastoma cells. British Journal of Pharmacology, 2005, 146, 1096-1109.	5.4	23
99	Expression of Nigrostriatal α6-Containing Nicotinic Acetylcholine Receptors Is Selectively Reduced, but Not Eliminated, by β3 Subunit Gene Deletion. Molecular Pharmacology, 2005, 67, 2007-2015.	2.3	129
100	Subunit Composition of Nicotinic Receptors in Monkey Striatum: Effect of Treatments with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine or l-DOPA. Molecular Pharmacology, 2005, 67, 32-41.	2.3	83
101	Heterogeneity and Selective Targeting of Neuronal Nicotinic Acetylcholine Receptor (nAChR) Subtypes Expressed on Retinal Afferents of the Superior Colliculus and Lateral Geniculate Nucleus: Identification of a New Native nAChR Subtype α3β2(α5 or β3) Enriched in Retinocollicular Afferents. Molecular Pharmacology, 2005, 68, 1162-1171.	2.3	68
102	Nicotinic Acetylcholine Receptor Subtypes Expression during Rat Retina Development and Their Regulation by Visual Experience. Molecular Pharmacology, 2004, 66, 85-96.	2.3	84
103	Nitrogen substitution modifies the activity of cytisine on neuronal nicotinic receptor subtypes. European Journal of Pharmacology, 2003, 471, 85-96.	3.5	50
104	Subunit Composition of Functional Nicotinic Receptors in Dopaminergic Neurons Investigated with Knock-Out Mice. Journal of Neuroscience, 2003, 23, 7820-7829.	3.6	473
105	Identification of the Nicotinic Receptor Subtypes Expressed on Dopaminergic Terminals in the Rat Striatum. Journal of Neuroscience, 2002, 22, 8785-8789.	3.6	369
106	An α4β4 Nicotinic Receptor Subtype Is Present in Chick Retina: Identification, Characterization and Pharmacological Comparison with the Transfected α4β4 and α6β4 Subtypes. Molecular Pharmacology, 2001, 59, 1410-1417.	2.3	29
107	Antagonism of nicotinic receptors of rat chromaffin cells by N,N,N-trimethyl-1-(4-trans) Tj ETQq1 1 0.784314 rgBT Pharmacology, 2000, 129, 1771-1779.	Overlock 5.4	10 Tf 50 1 17
108	Antibodies against neuronal nicotinic receptor subtypes in neurological disorders. Journal of Neuroimmunology, 2000, 102, 89-97.	2.3	41

#	Article	IF	CITATIONS
109	β3 subunit is present in different nicotinic receptor subtypes in chick retina. European Journal of Pharmacology, 2000, 393, 23-30.	3.5	38
110	Drugs selective for nicotinic receptor subtypes: a real possibility or a dream?. Behavioural Brain Research, 2000, 113, 183-192.	2.2	52
111	Chick Optic Lobe Contains a Developmentally Regulated α2α5β2 Nicotinic Receptor Subtype. Molecular Pharmacology, 2000, 58, 300-311.	2.3	28
112	Functional α6-Containing Nicotinic Receptors Are Present in Chick Retina. Molecular Pharmacology, 1999, 56, 11-19.	2.3	113
113	Expression and Transcriptional Regulation of the Human α3 Neuronal Nicotinic Receptor Subunit in T Lymphocyte Cell Lines. Journal of Neurochemistry, 1998, 71, 1261-1270.	3.9	45
114	α7 and α8 Nicotinic Receptor Subtypes Immunopurified from Chick Retina have Different Immunological, Pharmacological and Functional Properties. European Journal of Neuroscience, 1997, 9, 1201-1211.	2.6	49
115	Anti-Peptide Specific Antibodies for the Characterization of Different α Subunits of α-Bungarotoxin Binding Acetylcholine Receptors Present in Chick Optic Lobe. Journal of Receptors and Signal Transduction, 1993, 13, 453-465.	1.2	8