
Jeffrey J Coleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1714919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Resource: Draft Genome of <i>Fusarium avenaceum</i> , Strain F156N33, Isolated from the Atmosphere Above Virginia and Annotated Based on RNA Sequencing Data. Plant Disease, 2022, 106, 720-722.	1.4	4
2	An InÂVitro Co-Culture System for Rapid Differential Response to <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> Race 4 in Three Cotton Cultivars. Plant Disease, 2022, 106, 990-995.	1.4	5
3	Targeted Gene Disruption Via CRISPR/Cas9 Ribonucleoprotein Complexes in Fusarium oxysporum. Methods in Molecular Biology, 2022, 2391, 75-87.	0.9	0
4	CRISPR/Cas9 RNP-Mediated Gene Fusion to Assess Protein Quantification and Subcellular Localization in Fusarium oxysporum. Methods in Molecular Biology, 2022, 2391, 89-98.	0.9	0
5	Screening and Assessment of Pisatin Demethylase Activity (PDA). Methods in Molecular Biology, 2022, 2391, 185-190.	0.9	1
6	Pathogen Adaptation to the Xylem Environment. Annual Review of Phytopathology, 2022, 60, .	7.8	7
7	High-Quality Draft Nuclear and Mitochondrial Genome Sequence of <i>Fusarium oxysporum</i> f. sp. <i>albedinis</i> strain 9, the Causal Agent of Bayoud Disease on Date Palm. Plant Disease, 2022, 106, 1974-1976.	1.4	3
8	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
9	The Extracellular Superoxide Dismutase Sod5 From Fusarium oxysporum Is Localized in Response to External Stimuli and Contributes to Fungal Pathogenicity. Frontiers in Plant Science, 2021, 12, 608861.	3.6	10
10	The Genome Sequence of Five Genotypes of <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> : A Resource for Studies on Fusarium Wilt of Cotton. Molecular Plant-Microbe Interactions, 2020, 33, 138-140.	2.6	14
11	A novel mutation A212T in chloroplast Protoporphyrinogen oxidase (PPO1) confers resistance to PPO inhibitor Oxadiazon inEleusine indica. Pest Management Science, 2020, 76, 1786-1794.	3.4	26
12	Soil Type Affects Organic Acid Production and Phosphorus Solubilization Efficiency Mediated by Several Native Fungal Strains from Mexico. Microorganisms, 2020, 8, 1337.	3.6	20
13	No to <i>Neocosmospora</i> : Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus <i>Fusarium</i> . MSphere, 2020, 5, .	2.9	61
14	The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Communications Biology, 2020, 3, 50.	4.4	55
15	Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi. Computational and Structural Biotechnology Journal, 2019, 17, 761-769.	4.1	53
16	Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Medicinal Chemistry, 2019, 11, 869-883.	2.3	71
17	CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum. Fungal Genetics and Biology, 2019, 126, 17-24.	2.1	28
18	Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genetics and Biology, 2018, 117, 21-29.	2.1	91

JEFFREY J COLEMAN

#	Article	lF	CITATIONS
19	Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	21
20	Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium. MBio, 2016, 7, e02188-15.	4.1	17
21	Activity of caffeic acid phenethyl ester in <i>Caenorhabditis elegans</i> . Future Medicinal Chemistry, 2016, 8, 2033-2046.	2.3	14
22	The <scp><i>F</i></scp> <i>usarium solani</i> species complex: ubiquitous pathogens of agricultural importance. Molecular Plant Pathology, 2016, 17, 146-158.	4.2	144
23	The Role of Candida albicans SPT20 in Filamentation, Biofilm Formation and Pathogenesis. PLoS ONE, 2014, 9, e94468.	2.5	27
24	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	2.2	219
25	Fusarium Infection. Medicine (United States), 2013, 92, 305-316.	1.0	134
26	T2 Magnetic Resonance Enables Nanoparticle-Mediated Rapid Detection of Candidemia in Whole Blood. Science Translational Medicine, 2013, 5, 182ra54.	12.4	228
27	Concepts and Principles of Photodynamic Therapy as an Alternative Antifungal Discovery Platform. Frontiers in Microbiology, 2012, 3, 120.	3.5	200
28	The role of mycelium production and a MAPK-mediated immune response in theC. elegans-Fusariummodel system. Medical Mycology, 2012, 50, 488-496.	0.7	20
29	Polymerase Chain Reaction-Based Assays for the Diagnosis of Invasive Fungal Infections. Clinical Infectious Diseases, 2012, 54, 1322-1331.	5.8	59
30	Caenorhabditis elegans: A Nematode Infection Model for Pathogenic Fungi. Methods in Molecular Biology, 2012, 845, 447-454.	0.9	26
31	Antifungal Activity of Microbial Secondary Metabolites. PLoS ONE, 2011, 6, e25321.	2.5	69
32	Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host. Fungal Biology, 2011, 115, 1279-1289.	2.5	43
33	Fusarium Infection in Lung Transplant Patients. Medicine (United States), 2011, 90, 69-80.	1.0	67
34	Characterization of the Gene Encoding Pisatin Demethylase (<i>FoPDA</i> 1) in <i>Fusarium oxysporum</i> . Molecular Plant-Microbe Interactions, 2011, 24, 1482-1491.	2.6	43
35	The Effect of Cumulative Length of Hospital Stay on the Antifungal Resistance of Candida Strains Isolated from Critically III Surgical Patients. Mycopathologia, 2011, 171, 85-91.	3.1	19
36	Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates. BMC Microbiology, 2011, 11, 247.	3.3	58

JEFFREY J COLEMAN

#	Article	IF	CITATIONS
37	An ABC Transporter and a Cytochrome P450 of <i>Nectria haematococca</i> MPVI Are Virulence Factors on Pea and Are the Major Tolerance Mechanisms to the Phytoalexin Pisatin. Molecular Plant-Microbe Interactions, 2011, 24, 368-376.	2.6	87
38	The challenge of managing fusariosis. Virulence, 2011, 2, 91-96.	4.4	68
39	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	27.8	1,442
40	Characterization of Plant-Derived Saponin Natural Products against <i>Candida albicans</i> . ACS Chemical Biology, 2010, 5, 321-332.	3.4	115
41	Identification of Antifungal Compounds Active against Candida albicans Using an Improved High-Throughput Caenorhabditis elegans Assay. PLoS ONE, 2009, 4, e7025.	2.5	87
42	The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion. PLoS Genetics, 2009, 5, e1000618.	3.5	402
43	Efflux in Fungi: La Pièce de Résistance. PLoS Pathogens, 2009, 5, e1000486.	4.7	210
44	The Tangled Web of Signaling in Innate Immunity. Cell Host and Microbe, 2009, 5, 313-315.	11.0	4
45	Cryptococcus neoformans: Nonvertebrate Hosts and the Emergence of Virulence. , 0, , 261-267.		0