Jeffrey J Coleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1714919/publications.pdf

Version: 2024-02-01

45 4,379 26 41 g-index

45 appers citations h-index g-index

45 45 45 5928 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	27.8	1,442
2	The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion. PLoS Genetics, 2009, 5, e1000618.	3. 5	402
3	T2 Magnetic Resonance Enables Nanoparticle-Mediated Rapid Detection of Candidemia in Whole Blood. Science Translational Medicine, 2013, 5, 182ra54.	12.4	228
4	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	2.2	219
5	Efflux in Fungi: La Pièce de Résistance. PLoS Pathogens, 2009, 5, e1000486.	4.7	210
6	Concepts and Principles of Photodynamic Therapy as an Alternative Antifungal Discovery Platform. Frontiers in Microbiology, 2012, 3, 120.	3.5	200
7	The <scp><i>F</i></scp> <i>ubiquitous pathogens of agricultural importance. Molecular Plant Pathology, 2016, 17, 146-158.</i>	4.2	144
8	Fusarium Infection. Medicine (United States), 2013, 92, 305-316.	1.0	134
9	Characterization of Plant-Derived Saponin Natural Products against <i>Candida albicans</i> Chemical Biology, 2010, 5, 321-332.	3.4	115
10	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium </i> Includes the <i>Fusarium solani </i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
11	Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genetics and Biology, 2018, 117, 21-29.	2.1	91
12	Identification of Antifungal Compounds Active against Candida albicans Using an Improved High-Throughput Caenorhabditis elegans Assay. PLoS ONE, 2009, 4, e7025.	2.5	87
13	An ABC Transporter and a Cytochrome P450 of <i>Nectria haematococca</i> MPVI Are Virulence Factors on Pea and Are the Major Tolerance Mechanisms to the Phytoalexin Pisatin. Molecular Plant-Microbe Interactions, 2011, 24, 368-376.	2.6	87
14	Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Medicinal Chemistry, 2019, 11, 869-883.	2.3	71
15	Antifungal Activity of Microbial Secondary Metabolites. PLoS ONE, 2011, 6, e25321.	2.5	69
16	The challenge of managing fusariosis. Virulence, 2011, 2, 91-96.	4.4	68
17	Fusarium Infection in Lung Transplant Patients. Medicine (United States), 2011, 90, 69-80.	1.0	67
18	No to <i>Neocosmospora</i> : Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus <i>Fusarium</i> . MSphere, 2020, 5, .	2.9	61

#	Article	IF	Citations
19	Polymerase Chain Reaction-Based Assays for the Diagnosis of Invasive Fungal Infections. Clinical Infectious Diseases, 2012, 54, 1322-1331.	5.8	59
20	Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates. BMC Microbiology, 2011, 11, 247.	3.3	58
21	The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Communications Biology, 2020, 3, 50.	4.4	55
22	Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi. Computational and Structural Biotechnology Journal, 2019, 17, 761-769.	4.1	53
23	Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host. Fungal Biology, 2011, 115, 1279-1289.	2.5	43
24	Characterization of the Gene Encoding Pisatin Demethylase (<i>FoPDA</i> 1) in <i>Fusarium oxysporum</i> . Molecular Plant-Microbe Interactions, 2011, 24, 1482-1491.	2.6	43
25	CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum. Fungal Genetics and Biology, 2019, 126, 17-24.	2.1	28
26	The Role of Candida albicans SPT20 in Filamentation, Biofilm Formation and Pathogenesis. PLoS ONE, 2014, 9, e94468.	2.5	27
27	Caenorhabditis elegans: A Nematode Infection Model for Pathogenic Fungi. Methods in Molecular Biology, 2012, 845, 447-454.	0.9	26
28	A novel mutation A212T in chloroplast Protoporphyrinogen oxidase (PPO1) confers resistance to PPO inhibitor Oxadiazon inEleusine indica. Pest Management Science, 2020, 76, 1786-1794.	3.4	26
29	Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	21
30	The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system. Medical Mycology, 2012, 50, 488-496.	0.7	20
31	Soil Type Affects Organic Acid Production and Phosphorus Solubilization Efficiency Mediated by Several Native Fungal Strains from Mexico. Microorganisms, 2020, 8, 1337.	3.6	20
32	The Effect of Cumulative Length of Hospital Stay on the Antifungal Resistance of Candida Strains Isolated from Critically III Surgical Patients. Mycopathologia, 2011, 171, 85-91.	3.1	19
33	Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium. MBio, 2016, 7, e02188-15.	4.1	17
34	Activity of caffeic acid phenethyl ester in <i>Caenorhabditis elegans</i> . Future Medicinal Chemistry, 2016, 8, 2033-2046.	2.3	14
35	The Genome Sequence of Five Genotypes of <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> Resource for Studies on Fusarium Wilt of Cotton. Molecular Plant-Microbe Interactions, 2020, 33, 138-140.	2.6	14
36	The Extracellular Superoxide Dismutase Sod5 From Fusarium oxysporum Is Localized in Response to External Stimuli and Contributes to Fungal Pathogenicity. Frontiers in Plant Science, 2021, 12, 608861.	3.6	10

#	Article	IF	CITATIONS
37	Pathogen Adaptation to the Xylem Environment. Annual Review of Phytopathology, 2022, 60, .	7.8	7
38	An InÂVitro Co-Culture System for Rapid Differential Response to <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> Race 4 in Three Cotton Cultivars. Plant Disease, 2022, 106, 990-995.	1.4	5
39	The Tangled Web of Signaling in Innate Immunity. Cell Host and Microbe, 2009, 5, 313-315.	11.0	4
40	Genome Resource: Draft Genome of <i>Fusarium avenaceum</i> , Strain F156N33, Isolated from the Atmosphere Above Virginia and Annotated Based on RNA Sequencing Data. Plant Disease, 2022, 106, 720-722.	1.4	4
41	High-Quality Draft Nuclear and Mitochondrial Genome Sequence of <i>Fusarium oxysporum</i> f. sp. <i>albedinis</i> strain 9, the Causal Agent of Bayoud Disease on Date Palm. Plant Disease, 2022, 106, 1974-1976.	1.4	3
42	Screening and Assessment of Pisatin Demethylase Activity (PDA). Methods in Molecular Biology, 2022, 2391, 185-190.	0.9	1
43	Cryptococcus neoformans: Nonvertebrate Hosts and the Emergence of Virulence., 0,, 261-267.		0
44	Targeted Gene Disruption Via CRISPR/Cas9 Ribonucleoprotein Complexes in Fusarium oxysporum. Methods in Molecular Biology, 2022, 2391, 75-87.	0.9	0
45	CRISPR/Cas9 RNP-Mediated Gene Fusion to Assess Protein Quantification and Subcellular Localization in Fusarium oxysporum. Methods in Molecular Biology, 2022, 2391, 89-98.	0.9	0