Lantao Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1714778/publications.pdf

Version: 2024-02-01

257357 254106 2,448 43 24 43 citations h-index g-index papers 50 50 50 2085 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Separating the Influences of Low-Latitude Warming and Sea Ice Loss on Northern Hemisphere Climate Change. Journal of Climate, 2022, 35, 2327-2349.	1.2	9
2	The Simulated Atmospheric Response to Western North Pacific Sea Surface Temperature Anomalies. Journal of Climate, 2022, 35, 3335-3352.	1.2	5
3	Uncertainty in the Winter Tropospheric Response to Arctic Sea Ice Loss: The Role of Stratospheric Polar Vortex Internal Variability. Journal of Climate, 2022, 35, 3109-3130.	1.2	12
4	Subseasonal Earth System Prediction with CESM2. Weather and Forecasting, 2022, 37, 797-815.	0.5	18
5	Distinct North American Cooling Signatures Following the Zonally Symmetric and Asymmetric Modes of Winter Stratospheric Variability. Geophysical Research Letters, 2022, 49, .	1.5	7
6	Is There a Tropical Response to Recent Observed Southern Ocean Cooling?. Geophysical Research Letters, 2021, 48, e2020GL091235.	1.5	20
7	Strengthened Causal Connections Between the MJO and the North Atlantic With Climate Warming. Geophysical Research Letters, 2021, 48, e2020GL091168.	1.5	9
8	Initialized Earth System prediction from subseasonal to decadal timescales. Nature Reviews Earth & Environment, 2021, 2, 340-357.	12.2	85
9	Opposite Responses of the Dry and Moist Eddy Heat Transport Into the Arctic in the PAMIP Experiments. Geophysical Research Letters, 2021, 48, e2020GL089990.	1.5	11
10	Robust winter warming over Eurasia under stratospheric sulfate geoengineering $\hat{a} \in \text{``the role of stratospheric dynamics. Atmospheric Chemistry and Physics, 2021, 21, 6985-6997.}$	1.9	28
11	How well do we know the surface impact of sudden stratospheric warmings?. Geophysical Research Letters, 2021, 48, e2021GL095493.	1.5	5
12	Attribution of NAO Predictive Skill Beyond 2ÂWeeks in Boreal Winter. Geophysical Research Letters, 2020, 47, e2020GL090451.	1.5	4
13	Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nature Geoscience, 2020, 13, 275-281.	5.4	76
14	Global Coupled Climate Response to Polar Sea Ice Loss: Evaluating the Effectiveness of Different Iceâ€Constraining Approaches. Geophysical Research Letters, 2020, 47, e2019GL085788.	1.5	22
15	Robust Arctic warming caused by projected Antarctic sea ice loss. Environmental Research Letters, 2020, 15, 104005.	2.2	20
16	Subseasonal Prediction with and without a Well-Represented Stratosphere in CESM1. Weather and Forecasting, 2020, 35, 2589-2602.	0.5	10
17	Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics. Geophysical Research Letters, 2018, 45, 4264-4272.	1.5	53
18	Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nature Geoscience, 2018, 11, 155-163.	5.4	265

#	Article	IF	Citations
19	Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to Factual and Counterfactual forcing. Weather and Climate Extremes, 2018, 19, 1-9.	1.6	18
20	Evolution of the Global Coupled Climate Response to Arctic Sea Ice Loss during 1990–2090 and Its Contribution to Climate Change. Journal of Climate, 2018, 31, 7823-7843.	1.2	126
21	Contrasting the Antarctic and Arctic Atmospheric Responses to Projected Sea Ice Loss in the Late Twenty-First Century. Journal of Climate, 2018, 31, 6353-6370.	1.2	43
22	Barotropic and Baroclinic Eddy Feedbacks in the Midlatitude Jet Variability and Responses to Climate Change–Like Thermal Forcings. Journals of the Atmospheric Sciences, 2017, 74, 111-132.	0.6	14
23	Distinguishing Stratospheric Sudden Warmings from ENSO as Key Drivers of Wintertime Climate Variability over the North Atlantic and Eurasia. Journal of Climate, 2017, 30, 1959-1969.	1.2	77
24	Local increase of anticyclonic wave activity over northern Eurasia under amplified Arctic warming. Geophysical Research Letters, 2017, 44, 3299-3308.	1.5	23
25	What caused the recent "Warm Arctic, Cold Continents―trend pattern in winter temperatures?. Geophysical Research Letters, 2016, 43, 5345-5352.	1.5	245
26	The Role of Ocean Heat Transport in the Global Climate Response to Projected Arctic Sea Ice Loss. Journal of Climate, 2016, 29, 6841-6859.	1.2	103
27	Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss?. Geophysical Research Letters, 2016, 43, 2149-2157.	1.5	133
28	Reduced Risk of North American Cold Extremes due to Continued Arctic Sea Ice Loss. Bulletin of the American Meteorological Society, 2015, 96, 1489-1503.	1.7	108
29	Projected changes in regional climate extremes arising from Arctic sea ice loss. Environmental Research Letters, 2015, 10, 084006.	2.2	59
30	Effects of stratospheric variability on El Ni $\tilde{A}\pm$ o teleconnections. Environmental Research Letters, 2015, 10, 124021.	2.2	47
31	The Role of Ocean–Atmosphere Coupling in the Zonal-Mean Atmospheric Response to Arctic Sea Ice Loss. Journal of Climate, 2015, 28, 2168-2186.	1.2	244
32	Separating the Mechanisms of Transient Responses to Stratospheric Ozone Depletion–Like Cooling in an Idealized Atmospheric Model. Journals of the Atmospheric Sciences, 2015, 72, 763-773.	0.6	12
33	Mechanisms of Stratospheric and Tropospheric Circulation Response to Projected Arctic Sea Ice Loss*. Journal of Climate, 2015, 28, 7824-7845.	1.2	204
34	The Role of Subtropical Irreversible PV Mixing in the Zonal Mean Circulation Response to Global Warming–Like Thermal Forcing. Journal of Climate, 2014, 27, 2297-2316.	1.2	44
35	Influence of projected Arctic sea ice loss on polar stratospheric ozone and circulation in spring. Environmental Research Letters, 2014, 9, 084016.	2.2	20
36	The Role of Stratospheric Polar Vortex Breakdown in Southern Hemisphere Climate Trends. Journals of the Atmospheric Sciences, 2014, 71, 2335-2353.	0.6	32

#	Article	IF	CITATION
37	Delineating the Eddy–Zonal Flow Interaction in the Atmospheric Circulation Response to Climate Forcing: Uniform SST Warming in an Idealized Aquaplanet Model. Journals of the Atmospheric Sciences, 2013, 70, 2214-2233.	0.6	32
38	Sensitivities and Mechanisms of the Zonal Mean Atmospheric Circulation Response to Tropical Warming. Journals of the Atmospheric Sciences, 2013, 70, 2487-2504.	0.6	54
39	The role of synoptic eddies in the tropospheric response to stratospheric variability. Geophysical Research Letters, 2013, 40, 4933-4937.	1.5	48
40	The Predictability of Stratospheric Warming Events: More from the Troposphere or the Stratosphere?. Journals of the Atmospheric Sciences, 2012, 69, 768-783.	0.6	27
41	The Role of Planetary Waves in the Downward Influence of Stratospheric Final Warming Events. Journals of the Atmospheric Sciences, 2011, 68, 2826-2843.	0.6	17
42	Mechanisms of the Tropical Upwelling Branch of the Brewer–Dobson Circulation: The Role of Extratropical Waves. Journals of the Atmospheric Sciences, 2011, 68, 2878-2892.	0.6	31
43	Downward influence of stratospheric final warming events in an idealized model. Geophysical Research Letters, 2009, 36, .	1.5	28