## Sandra Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1714368/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Yin and Yang of Pneumolysin During Pneumococcal Infection. Frontiers in Immunology, 2022, 13, 878244.                                                                                                                                                          | 4.8  | 7         |
| 2  | Stabilin-1 plays a protective role against Listeria monocytogenes infection through the regulation of cytokine and chemokine production and immune cell recruitment. Virulence, 2021, 12, 2088-2103.                                                               | 4.4  | 2         |
| 3  | Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function. Cells, 2020, 9, 1590.                                                                                                                                                                             | 4.1  | 41        |
| 4  | Listeria monocytogenes Interferes with Host Cell Mitosis through Its Virulence Factors InIC and ActA. Toxins, 2020, 12, 411.                                                                                                                                       | 3.4  | 5         |
| 5  | Virulence gene repression promotes <i>Listeria monocytogenes</i> systemic infection. Gut Microbes, 2020, 11, 868-881.                                                                                                                                              | 9.8  | 3         |
| 6  | Listeria monocytogenes Wall Teichoic Acid Glycosylation Promotes Surface Anchoring of Virulence<br>Factors, Resistance to Antimicrobial Peptides, and Decreased Susceptibility to Antibiotics. Pathogens,<br>2020, 9, 290.                                         | 2.8  | 12        |
| 7  | Perfringolysin O-Induced Plasma Membrane Pores Trigger Actomyosin Remodeling and Endoplasmic<br>Reticulum Redistribution. Toxins, 2019, 11, 419.                                                                                                                   | 3.4  | 6         |
| 8  | Mechanisms protecting host cells against bacterial pore-forming toxins. Cellular and Molecular Life<br>Sciences, 2019, 76, 1319-1339.                                                                                                                              | 5.4  | 99        |
| 9  | Stathmin recruits tubulin to Listeria monocytogenes-induced actin comets and promotes bacterial dissemination. Cellular and Molecular Life Sciences, 2019, 76, 961-975.                                                                                            | 5.4  | 2         |
| 10 | Scavenger Receptors: Promiscuous Players during Microbial Pathogenesis. Critical Reviews in<br>Microbiology, 2018, 44, 685-700.                                                                                                                                    | 6.1  | 25        |
| 11 | Epithelial Keratins Modulate cMet Expression and Signaling and Promote InlB-Mediated Listeria<br>monocytogenes Infection of HeLa Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 146.                                                            | 3.9  | 9         |
| 12 | <scp>l</scp> â€Rhamnosylation of wall teichoic acids promotes efficient surface association of<br><scp><i>Listeria monocytogenes</i></scp> virulence factors InIB and Ami through interaction with<br>GW domains. Environmental Microbiology, 2018, 20, 3941-3951. | 3.8  | 23        |
| 13 | MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence.<br>Nucleic Acids Research, 2018, 46, 9338-9352.                                                                                                                      | 14.5 | 26        |
| 14 | Listeria monocytogenes CadC Regulates Cadmium Efflux and Fine-tunes Lipoprotein Localization to<br>Escape the Host Immune Response and Promote Infection. Journal of Infectious Diseases, 2017, 215,<br>1468-1479.                                                 | 4.0  | 26        |
| 15 | Endoplasmic reticulum chaperone Gp96 controls actomyosin dynamics and protects against poreâ€forming toxins. EMBO Reports, 2017, 18, 303-318.                                                                                                                      | 4.5  | 22        |
| 16 | Listeria monocytogenesencodes a functional ESX-1 secretion system whose expression is detrimental toin vivoinfection. Virulence, 2017, 8, 993-1004.                                                                                                                | 4.4  | 19        |
| 17 | Control of cytoskeletal dynamics during cellular responses to pore forming toxins. Communicative and Integrative Biology, 2017, 10, e1349582.                                                                                                                      | 1.4  | 12        |
| 18 | Bacterial Toxins as Pathogen Weapons Against Phagocytes. Frontiers in Microbiology, 2016, 7, 42.                                                                                                                                                                   | 3.5  | 80        |

SANDRA SOUSA

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to<br>Antimicrobial Peptides by Delaying Interaction with the Membrane. PLoS Pathogens, 2015, 11, e1004919.                               | 4.7  | 70        |
| 20 | Src-dependent Tyrosine Phosphorylation of Non-muscle Myosin Heavy Chain-IIA Restricts Listeria monocytogenes Cellular Infection. Journal of Biological Chemistry, 2015, 290, 8383-8395.                                      | 3.4  | 22        |
| 21 | Old War, New Battle, New Fighters!. Journal of Infectious Diseases, 2015, 211, 1361-1363.                                                                                                                                    | 4.0  | 2         |
| 22 | How Listeria monocytogenes organizes its surface for virulence. Frontiers in Cellular and Infection<br>Microbiology, 2014, 4, 48.                                                                                            | 3.9  | 80        |
| 23 | <i>Listeria monocytogenes</i> induces host DNA damage and delays the host cell cycle to promote infection. Cell Cycle, 2014, 13, 928-940.                                                                                    | 2.6  | 33        |
| 24 | Listeria monocytogenes Triggers the Cell Surface Expression of Gp96 Protein and Interacts with Its N<br>Terminus to Support Cellular Infection. Journal of Biological Chemistry, 2012, 287, 43083-43093.                     | 3.4  | 36        |
| 25 | PCR-based screening of targeted mutants for the fast and simultaneous identification of bacterial virulence factors. BioTechniques, 2012, 53, 1-7.                                                                           | 1.8  | 9         |
| 26 | The arsenal of virulence factors deployed by <i>Listeria monocytogenes</i> to promote its cell infection cycle. Virulence, 2011, 2, 379-394.                                                                                 | 4.4  | 198       |
| 27 | Listeria Genomics. , 2011, , 141-170.                                                                                                                                                                                        |      | 0         |
| 28 | LapB, a Novel <i>Listeria monocytogenes</i> LPXTG Surface Adhesin, Required for Entry into Eukaryotic<br>Cells and Virulence. Journal of Infectious Diseases, 2010, 202, 551-562.                                            | 4.0  | 73        |
| 29 | In Vivo Transcriptional Profiling of Listeria monocytogenes and Mutagenesis Identify New Virulence<br>Factors Involved in Infection. PLoS Pathogens, 2009, 5, e1000449.                                                      | 4.7  | 189       |
| 30 | Autoregulation allows Escherichia coli RNase E to adjust continuously its synthesis to that of its substrates. Molecular Microbiology, 2008, 42, 867-878.                                                                    | 2.5  | 51        |
| 31 | A critical role for peptidoglycan N-deacetylation in <i>Listeria</i> evasion from the host innate<br>immune system. Proceedings of the National Academy of Sciences of the United States of America, 2007,<br>104, 997-1002. | 7.1  | 329       |
| 32 | Src, cortactin and Arp2/3 complex are required for E-cadherin-mediated internalization of Listeria into cells. Cellular Microbiology, 2007, 9, 2629-2643.                                                                    | 2.1  | 85        |
| 33 | ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion.<br>Nature Cell Biology, 2005, 7, 954-960.                                                                                   | 10.3 | 106       |
| 34 | Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO<br>Journal, 2005, 24, 2827-2838.                                                                                        | 7.8  | 181       |
| 35 | Microbial strategies to target, cross or disrupt epithelia. Current Opinion in Cell Biology, 2005, 17, 489-498.                                                                                                              | 5.4  | 76        |
| 36 | Unconventional myosin VIIa and vezatin, two proteins crucial forListeriaentry into epithelial cells.<br>Journal of Cell Science, 2004, 117, 2121-2130.                                                                       | 2.0  | 75        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Exploitation of host cell cytoskeleton and signalling during Listeria monocytogenes entry into mammalian cells. Comptes Rendus - Biologies, 2004, 327, 115-123.                           | 0.2 | 24        |
| 38 | Republication of the article "Exploitation of host cell cytoskeleton and signalling during Listeria monocytogenes entry into mammalian cells― Comptes Rendus - Biologies, 2004, 327, 521. | 0.2 | 0         |
| 39 | Function in Escherichia coli of the non-catalytic part of RNase E: role in the degradation of ribosome-free mRNA. Molecular Microbiology, 2002, 45, 1231-1243.                            | 2.5 | 95        |