Ian H Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1714354/publications.pdf

Version: 2024-02-01

		7069	10708
179	19,948	78	138
papers	citations	h-index	g-index
188	188	188	7816
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The temporal distribution of Earth's supermountains and their potential link to the rise of atmospheric oxygen and biological evolution. Earth and Planetary Science Letters, 2022, 580, 117391.	1.8	21
2	Chromitite layers indicate the existence of large, long-lived, and entirely molten magma chambers. Scientific Reports, 2022, 12, 4092.	1.6	14
3	Nd-Hf isotopic systematics of the arc mantle and their implication for continental crust growth. Chemical Geology, 2022, 602, 120897.	1.4	5
4	Role of magma differentiation depth in controlling the Au grade of giant porphyry deposits. Earth and Planetary Science Letters, 2022, 593, 117640.	1.8	5
5	Platinum-group element geochemistry of the volcanic rocks associated with the Jaguar and Bentley Cu–Zn volcanogenic massive sulfide (VMS) deposits, Western Australia: implications for the role of chalcophile element fertility on VMS mineralization. Mineralium Deposita, 2021, 56, 583-600.	1.7	2
6	Using precious metal probes to quantify mid-ocean ridge magmatic processes. Earth and Planetary Science Letters, 2021, 553, 116603.	1.8	14
7	Crustal magmatic controls on the formation of porphyry copper deposits. Nature Reviews Earth & Environment, 2021, 2, 542-557.	12.2	50
8	Kinetic factors control trace element and isotope zoning in Archean pyrite corona nodules. Geochimica Et Cosmochimica Acta, 2021, 315, 230-250.	1.6	3
9	S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth and Planetary Science Letters, 2020, 536, 116140.	1.8	70
10	Platinum-Group Element Geochemistry of the Escondida Igneous Suites, Northern Chile: Implications for Ore Formation. Journal of Petrology, 2019, 60, 487-514.	1.1	26
11	Emplacement origins of coarsely-crystalline mafic rocks hosted in greenstone belts: Examples from the 2.7†Ga Yilgarn Craton, Western Australia. Precambrian Research, 2019, 324, 236-252.	1.2	7
12	Chalcophile element fertility and the formation of porphyry Cu \hat{A}_{\pm} Au deposits. Mineralium Deposita, 2019, 54, 657-670.	1.7	45
13	Platinum-group element geochemistry of the Forest Reef Volcanics, southeastern Australia: Implications for porphyry Au-Cu mineralisation. Geochimica Et Cosmochimica Acta, 2018, 220, 385-406.	1.6	21
14	When do mantle plumes destroy diamonds?. Earth and Planetary Science Letters, 2018, 502, 244-252.	1.8	25
15	Diffusion and solubilities of Rh, Ru and Ir in olivine and spinel. Chemical Geology, 2018, 494, 19-29.	1.4	8
16	Platinum-group element geochemistry used to determine Cu and Au fertility in the Northparkes igneous suites, New South Wales, Australia. Geochimica Et Cosmochimica Acta, 2017, 216, 372-392.	1.6	38
17	The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate. Nature, 2017, 545, 472-476.	13.7	41
18	Empirical constraints on partitioning of platinum group elements between Cr-spinel and primitive terrestrial magmas. Geochimica Et Cosmochimica Acta, 2017, 216, 393-416.	1.6	27

#	Article	IF	CITATIONS
19	Discussion: "Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust―by Wang et al. 2016 (Contributions to) Tj ETQq1 1	0.2 8431	43gBT /Ov∈
20	Raising the continental crust. Earth and Planetary Science Letters, 2017, 460, 112-122.	1.8	45
21	A subsidiary fast-diffusing substitution mechanism of Al in forsterite investigated using diffusion experiments under controlled thermodynamic conditions. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	38
22	Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits. Geochimica Et Cosmochimica Acta, 2016, 174, 236-246.	1.6	22
23	Petrogenesis and Geochemistry of Archean Komatiites. Journal of Petrology, 2016, 57, 147-184.	1.1	96
24	Do mantle plumes preserve the heterogeneous structure of their deep-mantle source?. Earth and Planetary Science Letters, 2016, 434, 10-17.	1.8	36
25	Using Platinum Group Elements to Identify Sulfide Saturation in a Porphyry Cu System: the El Abra Porphyry Cu Deposit, Northern Chile. Journal of Petrology, 2015, 56, 2491-2514.	1.1	45
26	The Role of Late Sulfide Saturation in the Formation of a Cu- and Au-rich Magma: Insights from the Platinum Group Element Geochemistry of Niuatahi-Motutahi Lavas, Tonga Rear Arc. Journal of Petrology, 2015, 56, 59-81.	1.1	99
27	Multiple Sulfur Isotope Analyses Support a Magmatic Model for the Volcanogenic Massive Sulfide Deposits of the Teutonic Bore Volcanic Complex, Yilgarn Craton, Western Australia. Economic Geology, 2015, 110, 1411-1423.	1.8	32
28	Evolution of a â^1/42.7 Ga large igneous province: A volcanological, geochemical and geochronological study of the Agnew Greenstone Belt, and new regional correlations for the Kalgoorlie Terrane (Yilgarn Craton, Western Australia). Precambrian Research, 2015, 270, 334-368.	1.2	48
29	Lithospheric controls on magma composition along Earth's longest continental hotspot track. Nature, 2015, 525, 511-514.	13.7	125
30	Mantle Plume, Planetary. , 2015, , 1440-1442.		0
31	Detrital zircon U-Pb-He double dating: A method of quantifying long- and short-term exhumation rates in collisional orogens. Science China Earth Sciences, 2014, 57, 2702-2711.	2.3	4
32	THE MINERALOGY OF THE BELLEROPHON-NELSON TELLURIDE-BEARING GOLD DEPOSIT, ST. IVES CAMP, YILGARN CRATON, WESTERN AUSTRALIA. Canadian Mineralogist, 2014, 52, 981-1006.	0.3	6
33	The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contributions To Mineralogy and Petrology, 2014, 167, 1.	1.2	100
34	Did the formation of D″ cause the Archaean–Proterozoic transition?. Earth and Planetary Science Letters, 2014, 388, 1-8.	1.8	42
35	Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth. Earth and Planetary Science Letters, 2014, 397, 111-120.	1.8	94
36	Mantle Plume, Planetary. , 2014, , 1-2.		0

#	Article	IF	CITATIONS
37	The largest Au deposits in the St Ives Goldfield (Yilgarn Craton, Western Australia) may be located in a major Neoarchean volcano-sedimentary depo-centre. Mineralium Deposita, 2013, 48, 861-881.	1.7	11
38	Chalcophile element geochemistry of the Boggy Plain zoned pluton, southeastern Australia: a S-saturated barren compositionally diverse magmatic system. Contributions To Mineralogy and Petrology, 2013, 165, 217-236.	1.2	25
39	Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochimica Et Cosmochimica Acta, 2013, 107, 96-120.	1.6	136
40	Platinum-alloy and sulfur saturation in an arc-related basalt to rhyolite suite: Evidence from the Pual Ridge lavas, the Eastern Manus Basin. Geochimica Et Cosmochimica Acta, 2013, 101, 76-95.	1.6	80
41	Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon. Chemical Geology, 2012, 332-333, 157-165.	1.4	117
42	Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: Evidence from the Ambae volcano, Vanuatu. Geochimica Et Cosmochimica Acta, 2012, 78, 28-50.	1.6	94
43	Platinum group element abundances in the upper continental crust revisited – New constraints from analyses of Chinese loess. Geochimica Et Cosmochimica Acta, 2012, 93, 63-76.	1.6	73
44	Evidence against a chondritic Earth. Nature, 2012, 483, 553-558.	13.7	103
45	Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. Geochimica Et Cosmochimica Acta, 2011, 75, 1308-1345.	1.6	74
46	Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica Et Cosmochimica Acta, 2011, 75, 1374-1395.	1.6	122
47	Solubility of Os and Ir in sulfide melt: Implications for Re/Os fractionation during mantle melting. Earth and Planetary Science Letters, 2011, 311, 339-350.	1.8	76
48	The Tarim picrite–basalt–rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions To Mineralogy and Petrology, 2010, 160, 407-425.	1.2	237
49	Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos, 2010, 118, 145-155.	0.6	92
50	Monsoon control over erosion patterns in the Western Himalaya: possible feed-back into the tectonic evolution. Geological Society Special Publication, 2010, 342, 185-218.	0.8	40
51	Provenance of Eocene river sediments from the central northern Sierra Nevada and implications for paleotopography. Tectonics, 2010, 29, n/a-n/a.	1.3	25
52	The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochimica Et Cosmochimica Acta, 2010, 74, 4187-4206.	1.6	115
53	Two cycles of voluminous pyroclastic volcanism and sedimentation related to episodic granite emplacement during the late Archean: Eastern Yilgarn Craton, Western Australia. Precambrian Research, 2010, 183, 251-274.	1.2	63
54	Asteroids and andesites. Nature, 2009, 459, E1-E1.	13.7	11

#	Article	IF	Citations
55	Progressive mixing of meteoritic veneer into the early Earth's deep mantle. Nature, 2009, 460, 620-623.	13.7	153
56	Pre-eruptive uplift in the Emeishan?. Nature Geoscience, 2009, 2, 530-531.	5.4	20
57	Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochimica Et Cosmochimica Acta, 2009, 73, 712-728.	1.6	113
58	Solubility of Pt in sulphide mattes: Implications for the genesis of PGE-rich horizons in layered intrusions. Geochimica Et Cosmochimica Acta, 2009, 73, 5764-5777.	1.6	110
59	Multimillion year thermal history of a porphyry copper deposit: application of U–Pb, 40Ar/39Ar and (U–Th)/He chronometers, Bajo de la Alumbrera copper–gold deposit, Argentina. Mineralium Deposita, 2008, 43, 295-314.	1.7	71
60	Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 2008, 1, 554-558.	5.4	323
61	U–Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China. Lithos, 2008, 105, 118-128.	0.6	57
62	Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos, 2008, 106, 12-24.	0.6	83
63	Oxygen solubility and speciation in sulphide-rich mattes. Geochimica Et Cosmochimica Acta, 2008, 72, 2619-2635.	1.6	68
64	The Age of the Potassic Alkaline Igneous Rocks along the Ailao Shan–Red River Shear Zone: Implications for the Onset Age of Left‣ateral Shearing: A Reply. Journal of Geology, 2008, 116, 205-207.	0.7	14
65	Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology, 2008, 36, 79.	2.0	174
66	New Insights into Crustal Contributions to Large-volume Rhyolite Generation in the Mid-Tertiary Sierra Madre Occidental Province, Mexico, Revealed by U–Pb Geochronology. Journal of Petrology, 2008, 49, 47-77.	1.1	101
67	The Age of the Potassic Alkaline Igneous Rocks along the Ailao Shan–Red River Shear Zone: Implications for the Onset Age of Leftâ€Lateral Shearing. Journal of Geology, 2007, 115, 231-242.	0.7	136
68	Platinum Group Element Geochemistry of Andesite Intrusions of the Kelian Region, East Kalimantan, Indonesia: Implications of Gold Depletion in the Intrusions Associated with the Kelian Gold Deposit. Economic Geology, 2007, 102, 95-108.	1.8	15
69	How chalcophile is rhenium? An experimental study of the solubility of Re in sulphide mattes. Earth and Planetary Science Letters, 2007, 260, 537-548.	1.8	84
70	Testing the plume theory. Chemical Geology, 2007, 241, 153-176.	1.4	263
71	The Great Plume Debate: Testing the plume theory. Chemical Geology, 2007, 241, 149-152.	1.4	48
72	Flat rare earth element patterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China. Lithos, 2007, 95, 267-278.	0.6	68

#	Article	IF	CITATIONS
73	Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	80
74	Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?. Earth and Planetary Science Letters, 2006, 250, 116-133.	1.8	286
75	U–Th–Pb detrital zircon geochronology from the southern Prince Charles Mountains, East Antarctica—Defining the Archaean to Neoproterozoic Ruker Province. Precambrian Research, 2006, 148, 292-306.	1.2	82
76	Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 2006, 41, 152-159.	1.7	257
77	U-Pb Zircon Geochronology of Granitic Rocks from the Chuquicamata-El Abra Porphyry Copper Belt of Northern Chile: Excimer Laser Ablation ICP-MS Analysis. Economic Geology, 2006, 101, 1327-1344.	1.8	51
78	Large Igneous Provinces and the Mantle Plume Hypothesis. Elements, 2005, 1, 265-269.	0.5	254
79	Frontiers in large igneous province research. Lithos, 2005, 79, 271-297.	0.6	311
80	Age of the Los Ranchos Formation, Dominican Republic: Timing and tectonic setting of primitive island arc volcanism in the Caribbean region. Bulletin of the Geological Society of America, 2005, 117, 987.	1.6	44
81	Geochronological and geochemical study on the Yulong porphyry copper ore belt in eastern Tibet, China., 2005,, 1235-1237.		1
82	(U-Th)/(He-Pb) double dating of detrital zircons. Numerische Mathematik, 2005, 305, 259-311.	0.7	148
83	He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters, 2005, 237, 402-432.	1.8	135
84	Age of the Pueblo Viejo Gold-Silver Deposit and Its Significance to Models for High-Sulfidation Epithermal Mineralization. Economic Geology, 2005, 100, 253-272.	1.8	16
85	ELA-ICP-MS U?Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu?Au deposit: implications for porphyry-related mineralization. Mineralium Deposita, 2004, 39, 46-67.	1.7	89
86	Thermochronology of the modern Indus River bedload: New insight into the controls on the marine stratigraphic record. Tectonics, 2004, 23, n/a-n/a.	1.3	39
87	Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 2004, 205, 115-140.	1.4	1,472
88	Evidence for Multiple Recycling in Neoproterozoic through Pennsylvanian Sedimentary Rocks of the Central Appalachian Basin. Journal of Geology, 2004, 112, 261-276.	0.7	95
89	Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Numerische Mathematik, 2003, 303, 319-351.	0.7	80
90	Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology, 2003, 31, 761.	2.0	163

#	Article	lF	CITATIONS
91	Predominance of Grenvillian Magmatism Recorded in Detrital Zircons from Modern Appalachian Rivers. Journal of Geology, 2003, 111, 707-717.	0.7	57
92	Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle. Geochimica Et Cosmochimica Acta, 2002, 66, 1651-1661.	1.6	76
93	Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions To Mineralogy and Petrology, 2002, 144, 347-364.	1.2	741
94	Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology, 2001, 29, 383.	2.0	202
95	Identification of ancient mantle plumes. , 2001, , .		38
96	SHRIMP baddeleyite age for the Fraser Dyke Swarm, southeast Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 2000, 47, 309-313.	0.4	60
97	Preservation of near-solar neon isotopic ratios in Icelandic basalts. Earth and Planetary Science Letters, 2000, 180, 309-324.	1.8	88
98	Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Economic Geology, 1999, 94, 423-437.	1.8	172
99	lon microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Research, 1998, 87, 135-159.	1.2	347
100	Review of the application of isotopic studies to the genesis of Cuâ€Au mineralisation at Olympic Dam and Au mineralisation at Porgera, the Tennant Creek district and Yilgarn Craton. Australian Journal of Earth Sciences, 1998, 45, 201-218.	0.4	34
101	Geochronology of supracrustal rocks from the Golden Grove area, Murchison Province, Yilgarn Craton, Western Australiaâ^—. Australian Journal of Earth Sciences, 1998, 45, 571-577.	0.4	36
102	Genesis of flood basalts from eclogite-bearing mantle plumes. Journal of Geophysical Research, 1997, 102, 20179-20197.	3.3	152
103	Niobium/Uranium Evidence for Early Formation of the Continental Crust. Science, 1997, 275, 521-523.	6.0	105
104	Geochronological constraints on the age of komatiites and nickel mineralisation in the Lake Johnston greenstone belt, Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 1996, 43, 381-385.	0.4	33
105	Chronology of the Mount Magnet granite-greenstone terrain, Yilgarn Craton, Western Australia: implications for field based predictions of the relative timing of granitoid emplacement. Precambrian Research, 1996, 78, 237-260.	1.2	33
106	Constraints on the age of granitoid emplacement, metamorphism, gold mineralization, and subsequent cooling of the Archean greenstone terrane at Big Bell, Western Australia. Economic Geology, 1996, 91, 896-915.	1.8	33
107	A Strontium Isotopic Investigation of the Bjerkreim—Sokndal Layered Instrusion, Southwest Norway. Journal of Petrology, 1996, 37, 171-193.	1.1	23
108	Sm-Nd systematics of hydrothermal scheelite from the Mount Charlotte Mine, Kalgoorlie, Western Australia; an isotopic link between gold mineralization and komatiites. Economic Geology, 1995, 90, 2329-2335.	1.8	37

#	Article	IF	Citations
109	The evolution of the mantle's chemical structure. Lithos, 1993, 30, 389-399.	0.6	74
110	New constraints on the 138La \hat{l}^2 -decay constant based on a geochronological study of granites from the Yilgarn Block, Western Australia. Chemical Geology, 1993, 104, 293-300.	1.4	20
111	Age of granite emplacement in the Norseman region of Western Australia. Australian Journal of Earth Sciences, 1993, 40, 559-574.	0.4	17
112	Petrology of the G and H Chromitite Zones in the Mountain View Area of the Stillwater Complex, Montana. Journal of Petrology, 1993, 34, 291-316.	1.1	79
113	Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia. Economic Geology, 1993, 88, 804-816.	1.8	125
114	The Changing Nature of Mantle Hotspots through Time: Implications for the Chemical Evolution of the Mantle. Journal of Geology, 1992, 100, 497-523.	0.7	203
115	Mantle Plumes and Continental Tectonics. Science, 1992, 256, 186-193.	6.0	278
116	Synchronism of the Siberian Traps and the Permian-Triassic Boundary. Science, 1992, 258, 1760-1763.	6.0	368
117	Late Archaean granites of the southeastern Yilgarn Block, Western Australia: age, geochemistry, and origin. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83, 211-226.	0.3	81
118	The eruption of komatiites and picrites in preference to primitive basalts. Earth and Planetary Science Letters, 1991, 105, 343-352.	1.8	12
119	On the dynamics of long-lived plume conduits in the convecting mantle. Earth and Planetary Science Letters, 1991, 103, 214-227.	1.8	96
120	Interaction of mantle plume heads with the Earth's surface and onset of smallâ€scale convection. Journal of Geophysical Research, 1991, 96, 18295-18310.	3.3	275
121	Turbulent fountains in an open chamber. Journal of Fluid Mechanics, 1990, 212, 557.	1.4	153
122	Chemical geodynamics in the back-arc region of Japan based on the trace element and Srî—,Nd isotopic compositions. Tectonophysics, 1990, 174, 207-233.	0.9	82
123	Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 1990, 99, 66-78.	1.8	548
124	Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 1990, 99, 79-93.	1.8	1,091
125	Fountains in Magma Chambers. Journal of Petrology, 1989, 30, 885-923.	1.1	121
126	The age and origin of younger granitic plutons of the Shaw Batholith in the Archaean Pilbara Block, Western Australia. Contributions To Mineralogy and Petrology, 1989, 101, 361-376.	1.2	90

#	Article	IF	Citations
127	Melting in an Archaean mantle plume: heads it's basalts, tails it's komatiites. Nature, 1989, 339, 697-699.	13.7	419
128	Age and origin of granitic rocks in the kalgoorlie-norseman region of Western Australia: Implications for the origin of archaean crust. Geochimica Et Cosmochimica Acta, 1989, 53, 1259-1275.	1.6	69
129	Geological Note: A postâ€metamorphic age for gold mineralization at lady bountiful, Yilgarn Block, Western Australia. Australian Journal of Earth Sciences, 1989, 36, 313-316.	0.4	11
130	Chemical geodynamics in a back arc region around the Sea of Japan: Implications for the genesis of alkaline basalts in Japan, Korea, and China. Journal of Geophysical Research, 1989, 94, 4634-4654.	3.3	128
131	A two-stage model for the formation of the granite-greenstone terrains of the Kalgoorlie-Norseman area, Western Australia. Earth and Planetary Science Letters, 1988, 90, 11-25.	1.8	253
132	Role of late magmatic fluids in Merensky-type platinum deposits: A discussion. Geology, 1988, 16, 488.	2.0	65
133	Laboratory modeling of convection in magma chambers: Crystallization against sloping floors. Journal of Geophysical Research, 1988, 93, 7974-7988.	3.3	13
134	Sm-Nd isotope systematics in uranium rare-earth element mineralization at the Mary Kathleen uranium mine, Queensland. Economic Geology, 1987, 82, 1805-1826.	1.8	47
135	Distribution of Orthocumulate Textures in the Jimberlana Intrusion. Journal of Geology, 1987, 95, 35-53.	0.7	106
136	A Laboratory Investigation of Assimilation at the Top of a Basaltic Magma Chamber. Journal of Geology, 1987, 95, 155-172.	0.7	65
137	A laboratory and theoretical study of the growth of "black smoker―chimneys. Earth and Planetary Science Letters, 1987, 82, 36-48.	1.8	29
138	Temperature, density and buoyancy fluxes in "black smoker―plumes, and the criterion for buoyancy reversal. Earth and Planetary Science Letters, 1987, 86, 85-92.	1.8	76
139	Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada: Reply. Canadian Journal of Earth Sciences, 1987, 24, 1500-1501.	0.6	4
140	Compositional and thermal convection in magma chambers. Contributions To Mineralogy and Petrology, 1987, 96, 465-475.	1.2	117
141	Zircon xenocrysts from the Kambalda volcanics: age constraints and direct evidence for older continental crust below the Kambalda-Norseman greenstones. Earth and Planetary Science Letters, 1986, 76, 299-311.	1.8	207
142	Convection and mixing in magma chambers. Earth-Science Reviews, 1986, 23, 255-352.	4.0	236
143	Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada. Canadian Journal of Earth Sciences, 1986, 23, 222-237.	0.6	227
144	Composition-volume changes during hydrothermal alteration of andesite at Buttercup Hill, Noranda District, Quebec. Geochimica Et Cosmochimica Acta, 1986, 50, 2693-2705.	1.6	48

#	Article	IF	Citations
145	The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts. Geochimica Et Cosmochimica Acta, 1986, 50, 1871-1887.	1.6	195
146	Sm-Nd and Rb-Sr dating of an Archean massive sulfide deposit: Kidd Creek, Ontario. Geology, 1986, 14, 585.	2.0	23
147	K-Ar ages of basalts from the Higashi-Matsuura district, northwestern Kyushu, Japan and regional geochronology of the Cenozoic alkaline volcanic rocks in eastern Asia Geochemical Journal, 1986, 20, 91-99.	0.5	30
148	The dynamics of magma-mixing during flow in volcanic conduits. Contributions To Mineralogy and Petrology, 1986, 94, 72-81.	1.2	119
149	A fluid dynamic model for the potholes of the Merensky Reef. Economic Geology, 1986, 81, 1118-1125.	1.8	72
150	Platinum-group elements and gold in the komatiite-hosted Fe-Ni-Cu sulfide deposits at Kambalda, Western Australia. Economic Geology, 1986, 81, 1226-1235.	1.8	32
151	The Influence of Viscosity on Fountains in Magma Chambers. Journal of Petrology, 1986, 27, 1-30.	1.1	143
152	The difference between oceanic and continental tholeiites: a fluid dynamic explanation. Contributions To Mineralogy and Petrology, 1985, 91, 37-43.	1.2	85
153	Turbulent mixing between fluids with different viscosities. Nature, 1985, 313, 39-42.	13.7	92
154	The influence of subduction processes on the geochemistry of Japanese alkaline basalts. Nature, 1985, 316, 55-58.	13.7	122
155	The Effect of Postcumulus Reactions on Composition of Chrome-spinels from the Jimberlana Intrusion. Journal of Petrology, 1985, 26, 763-786.	1.1	96
156	A lower crustal origin for massif-type anorthosites. Nature, 1984, 311, 372-374.	13.7	50
157	Mantle convection and early crustal evolution. Precambrian Research, 1984, 26, 15-56.	1.2	63
158	Rare-earth element mobility in alteration pipes below massive Cuî—,Zn-sulfide deposits. Chemical Geology, 1984, 45, 181-202.	1.4	119
159	A note on fluid dynamic processes which can influence the deposition of massive sulfides. Economic Geology, 1984, 79, 1905-1913.	1.8	36
160	A 3500 Ma plutonic and volcanic calc-alkaline province in the Archaean East Pilbara Block. Contributions To Mineralogy and Petrology, 1983, 84, 25-35.	1.2	110
161	No water, no granites ―No oceans, no continents. Geophysical Research Letters, 1983, 10, 1061-1064.	1.5	284
162	Archean komatiites and geotherms: Solution to an apparent contradiction. Geophysical Research Letters, 1983, 10, 1133-1136.	1.5	71

#	Article	IF	Citations
163	A Model for the Origin of the Platinum-Rich Sulfide Horizons in the Bushveld and Stillwater Complexes. Journal of Petrology, 1983, 24, 133-165.	1.1	380
164	Rare earth elements in volcanic rocks associated with Cu–Zn massive sulphide mineralization: a preliminary report. Canadian Journal of Earth Sciences, 1982, 19, 619-623.	0.6	44
165	Pyroxene accumulation in spinifex-textured rocks. Geological Magazine, 1982, 119, 605-610.	0.9	24
166	Precious metals in the Jimberlana Intrusion, Western Australia; implications for the genesis of platiniferous ores in layered intrusions. Economic Geology, 1981, 76, 1118-1141.	1.8	75
167	The role of subvolcanic sills in the generation of massive sulfide deposits. Economic Geology, 1981, 76, 2248-2253.	1.8	57
168	Comment on discussion by Engi and Evans. Contributions To Mineralogy and Petrology, 1980, 73, 205-206.	1.2	7
169	Accessory phases and the generation of LREE-Enriched basalts? A test for disequilibrium melting. Contributions To Mineralogy and Petrology, 1980, 72, 157-163.	1.2	17
170	A re-evaluation of the olivine-spinel geothermometer. Contributions To Mineralogy and Petrology, 1979, 68, 325-334.	1.2	234
171	The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology, 1979, 74, 1503-1506.	1.8	443
172	Plagioclase buoyancy in basaltic liquids as determined with a centrifuge furnace. Contributions To Mineralogy and Petrology, 1978, 67, 369-377.	1.2	133
173	Some problems with the cumulus theory. Lithos, 1978, 11, 311-323.	0.6	257
174	The geochemistry of loveringite, a uranium-rare-earth-bearing accessory phase from the Jimberlana Intrusion of Western Australia. Mineralogical Magazine, 1978, 42, 187-193.	0.6	26
175	A Study of Macro-Rhythmic Layering and Cumulate Processes in the Jimberlana Intrusion, Western Australia. Part I: The Upper Layered Series. Journal of Petrology, 1977, 18, 183-215.	1.1	85
176	The structure and shape of the Jimberlana Intrusion, Western Australia, as indicated by an investigation of the Bronzite Complex. Geological Magazine, 1976, 113, 129-139.	0.9	28
177	Direct evidence of present-day serpentinization in the Jimberlana Intrusion, Western Australia. Geological Magazine, 1975, 112, 77-80.	0.9	6
178	Factors effecting the stability field of Ca-poor pyroxene and the origin of the Ca-poor minimum in Ca-rich pyroxenes from tholeiitic intrusions. Contributions To Mineralogy and Petrology, 1974, 48, 205-219.	1.2	21
179	Geochronology, Petrogenesis and Oxidation State of the Northparkes Igneous Suite, New South Wales, Australia: Implications for Magma Fertility. Economic Geology, 0, , .	1.8	9