Mario Calabrese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1714198/publications.pdf

Version: 2024-02-01

24 papers 330 citations

933447 10 h-index 996975 15 g-index

24 all docs

24 docs citations

times ranked

24

200 citing authors

#	Article	IF	CITATIONS
1	Arsenic contamination at the Bagnoli Bay seabed (South Italy) via particle tracking numerical modeling: Pollution patterns from stationary climatic forcings. Chemosphere, 2022, 303, 134955.	8.2	4
2	Predicting Crenulate Bay Profiles from Wave Fronts: Numerical Experiments and Empirical Formulae. Geosciences (Switzerland), 2021, 11, 208.	2.2	8
3	Trigno River Mouth Evolution via Littoral Drift Rose. Water (Switzerland), 2021, 13, 2995.	2.7	2
4	CFD experiments on a low crested sloping top caisson breakwater. Part 1. nature of loadings and global stability. Ocean Engineering, 2019, 182, 259-282.	4.3	17
5	CFD experiments on a low crested sloping top caisson breakwater. Part 2. Analysis of plume impact. Ocean Engineering, 2019, 173, 345-357.	4.3	16
6	A study of wave reflection based on the maximum wave momentum flux approach. Coastal Engineering Journal, 2018, 60, 1-21.	1.9	7
7	The use of the analytic hierarchy process method for supporting urban road regeneration actions: The case study of Naples. , 2017, , .		1
8	The Use of CFD in the Analysis of Wave Loadings Acting on Seawave Slot-Cone Generators. Sustainability, 2016, 8, 1255.	3.2	15
9	Nature and magnitude of wave loadings at Seawave Slot-cone Generators. Ocean Engineering, 2015, 95, 34-58.	4.3	32
10	Engineering Modeling of Wave Transmission of Reef Balls. Journal of Waterway, Port, Coastal and Ocean Engineering, 2014, 140 , .	1.2	17
11	Predicting wave transmission past Reef Ball ^{â,,¢} submerged breakwaters. Journal of Coastal Research, 2013, 65, 171-176.	0.3	17
12	Non Breaking Wave Forces at the Front Face of Seawave Slotcone Generators. Energies, 2012, 5, 4779-4803.	3.1	37
13	Wave disturbance behind low-crested structures: Diffraction and overtopping effects. Coastal Engineering, 2009, 56, 1173-1185.	4.0	29
14	ESTIMATING POWER SPECTRAL DENSITY BEHIND LOW CRESTED BREAKWATERS. , 2009, , .		0
15	A PARAMETRIC STUDY ON WAVE REFLECTION FROM LOW CRESTED BREAKWATERS. , 2009, , .		О
16	MACROFEATURES AND ENGINEERING PROPERTIES OF WAVE BREAKING AT SUBMERGED RUBBLE-MOUND BREAKWATERS., 2009, , .		0
17	A PHYSICALLY BASED APPROACH TO WAVE TRANSMISSION AT LOW CRESTED BREAKWATERS. , 2009, , .		О
18	2D Wave setup behind submerged breakwaters. Ocean Engineering, 2008, 35, 1015-1028.	4.3	39

#	ARTICLE	IF	CITATION
19	Wave breaking macrofeatures on a submerged rubble mound breakwater. Journal of Hydro-Environment Research, 2008, 1, 216-225.	2.2	10
20	Conceptual Approach for Prediction of Wave Transmission at Low-Crested Breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133, 213-224.	1.2	49
21	Wave Transmission Behind Low-Crested Structures. , 2004, , 580.		10
22	LARGE-SCALE EXPERIMENTS ON THE BEHAVIOUR OF LOW CRESTED AND SUBMERGED BREAKWATERS IN PRESENCE OF BROKEN WAVES. , 2003, , .		19
23	WAVE HEIGHTS DISTRIBUTION IN THE SURF ZONE: ANALYSIS OF EXPERIMENTAL DATA. , 2003, , .		0
24	Effect of Random Multidirectional Wave Fields on Wave Loads on Vertical and Composite Breakwaters., 2001,, 1710.		1