
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1713763/publications.pdf Version: 2024-02-01

Υλό Shanshan

#	Article	IF	CITATIONS
1	Yttrium oxide nanorods as electrocatalytic polysulfides traps for curbing shuttle effect in lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 891, 162074.	5.5	30
2	Simple fabrication of Ni nanodots decorated Ni/Ketjen black composite for sulfur host in lithiumâ€sulfur battery. International Journal of Energy Research, 2022, 46, 3260-3271.	4.5	1
3	A facile synthesis of stable titanium carbide-decorated carbon nanofibers as electrocatalytic membrane for high-performance lithium-sulfur batteries. Ionics, 2022, 28, 1173-1182.	2.4	7
4	In situ preparation of chromium carbide–modified carbon nanofibers as functional electrocatalyst for polysulfide reduction in lithium/sulfur batteries. Ionics, 2022, 28, 1701-1711.	2.4	18
5	Cubic pyrite nickel sulfide nanospheres decorated with Ketjen black@sulfur composite for promoting polysulfides redox kinetics in lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 907, 164396.	5.5	31
6	A simple approach to fabricate self-supporting graphene oxide/carbon nanotubes hybrid membrane as efficient polysulfides trapping in lithium/sulfur batteries. Journal of Materials Science: Materials in Electronics, 2022, 33, 12871-12883.	2.2	14
7	Spinel manganese-cobalt oxide nanospheres anchored on nitrogen-containing carbon nanofibers as a highly efficient redox electrocatalyst in lithium/polysulfides batteries. Applied Surface Science, 2022, 598, 153787.	6.1	78
8	Gadolinium oxide nanorods decorated Ketjen black@sulfur composites as functional catalyzing polysulfides conversion in lithium/sulfur batteries. International Journal of Energy Research, 2022, 46, 16050-16060.	4.5	12
9	Hybrid of spinel zinc-cobalt oxide nanospheres combined with nitrogen-containing carbon nanofibers as advanced electrocatalyst for redox reaction in lithium/polysulfides batteries. Advanced Powder Technology, 2022, 33, 103710.	4.1	16
10	Effects of nano-TiO ₂ particle size on microstructure and electrochemical performance of TiO ₂ /PEDOT nanocomposites cathode in lithium-sulphur battery. Materials Technology, 2021, 36, 616-622.	3.0	5
11	Nanosized <scp> Ti ₄ O ₇ </scp> supported on carbon nanotubes composite modified separator for enhanced electrochemical properties of lithium sulfur battery. International Journal of Energy Research, 2021, 45, 4331-4344.	4.5	14
12	Decoration of indium tin oxide nanoparticles with different crystal structures and morphologies on polypropylene separator for <scp>Liâ€s</scp> battery. International Journal of Energy Research, 2021, 45, 8992-9005.	4.5	8
13	Approaching high performance <scp>PVDFâ€HFP</scp> based solid composite electrolytes with <scp>LLTO</scp> nanorods for solidâ€state lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 7663-7674.	4.5	18
14	The composite of Ketjen black and Ti4O7-modified separator for enhancing the electrochemical properties of lithium sulfur battery. Ionics, 2021, 27, 2397-2408.	2.4	5
15	In situ growth of Co nanoparticles in Ketjen Black for enhanced electrochemical performances of lithium-sulfur battery cathode. Journal of Solid State Electrochemistry, 2021, 25, 1579-1590.	2.5	8
16	Polyamidoamine dendrimer modified Ketjen Black mixed sulfur coated cathode for enhancing polysulfides adsorbability in Li-S batteries. Ionics, 2021, 27, 2997-3005.	2.4	25
17	CoFe2O4 nanoparticles loaded N-doped carbon nanofibers networks as electrocatalyst for enhancing redox kinetics in Li-S batteries. Applied Surface Science, 2021, 560, 149908.	6.1	111
18	Fabrication of ultrafine ZnFe2O4 nanoparticles decorated on nitrogen doped carbon nanofibers composite for efficient adsorption/electrocatalysis effect of lithium-sulfur batteries. Electrochimica Acta, 2021, 394, 139126.	5.2	38

#	Article	IF	CITATIONS
19	Hybrid cathode composed of pyrite-structure CoS2 hollow polyhedron and Ketjen black@sulfur materials propelling polysulfide conversion in lithium sulfur batteries. Ceramics International, 2021, 47, 27122-27131.	4.8	33
20	Modified polysulfides conversion catalysis and confinement by employing La2O3 nanorods in high performance lithium-sulfur batteries. Ceramics International, 2021, 47, 27012-27021.	4.8	40
21	Porous N-doped carbon nanofibers assembled with nickel ferrite nanoparticles as efficient chemical anchors and polysulfide conversion catalyst for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 601, 209-219.	9.4	123
22	Nanoscale CuFe ₂ O ₄ Uniformly Decorated on Nitrogenâ€Doped Carbon Nanofibers as Highly Efficient Catalysts for Polysulfide Conversion in Lithiumâ€Sulfur Batteries. ChemElectroChem, 2021, 8, 4564-4572.	3.4	25
23	Freestanding graphitic carbon nitrideâ€based carbon nanotubes hybrid membrane as electrode for lithium/polysulfides batteries. International Journal of Energy Research, 2020, 44, 3110-3121.	4.5	39
24	Effects of different GO contents in GO@KB-S composite prepared by spray drying method for lithium-sulfur batteries. lonics, 2020, 26, 2315-2324.	2.4	8
25	Toward high performance solidâ€state lithiumâ€ion battery with a promising <scp>PEO</scp> / <scp>PPC</scp> blend solid polymer electrolyte. International Journal of Energy Research, 2020, 44, 10168-10178.	4.5	47
26	Graphene oxide coated nanosheetâ€like γâ€MnS @ KBâ€S fabricated by spray drying for high energy density Liâ€ batteries. International Journal of Energy Research, 2020, 44, 11274-11287.	.5 4.5	8
27	CoS ₂ -Decorated Cobalt/Nitrogen Co-Doped Carbon Nanofiber Networks as Dual Functional Electrocatalysts for Enhancing Electrochemical Redox Kinetics in Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 13600-13609.	6.7	66
28	Functionalization of Nitrogen-Doped Carbon Nanofibers with Polyamidoamine Dendrimer as a Freestanding Electrode with High Sulfur Loading for Lithium–Polysulfides Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 7815-7824.	6.7	65
29	Molybdenum carbide nanocrystals modified carbon nanofibers as electrocatalyst for enhancing polysulfides redox reactions in lithiumâ€sulfur batteries. International Journal of Energy Research, 2020, 44, 8388-8398.	4.5	42
30	Synergistic effect of titaniumâ€oxide integrated with graphitic nitride hybrid for enhanced electrochemical performance in lithiumâ€sulfur batteries. International Journal of Energy Research, 2020, 44, 10937-10945.	4.5	41
31	Hybrid Membrane with SnS ₂ Nanoplates Decorated Nitrogen-Doped Carbon Nanofibers as Binder-Free Electrodes with Ultrahigh Sulfur Loading for Lithium Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 2707-2715.	6.7	151
32	Improve redox activity and cycling stability of the lithiumâ€sulfur batteries via in situ formation of a spongeâ€like separator modification layer. International Journal of Energy Research, 2020, 44, 4933-4943.	4.5	9
33	Electrospun three-dimensional cobalt decorated nitrogen doped carbon nanofibers network as freestanding electrode for lithium/sulfur batteries. Electrochimica Acta, 2020, 337, 135765.	5.2	89
34	Boosting the electrochemical performance of lithium-sulfur batteries by using a carbon black/LiMn2O4-modified separator. Journal of Alloys and Compounds, 2020, 835, 155251.	5.5	23
35	Fabrication of Magnéli phase Ti4O7 nanorods as a functional sulfur material host for lithium-sulfur battery cathode. Journal of Electroceramics, 2020, 44, 154-162.	2.0	29
36	Boosting the performance of poly(ethylene oxide)â€based solid polymer electrolytes by blending with poly(vinylidene fluorideâ€coâ€hexafluoropropylene) for solidâ€state lithiumâ€ion batteries. International Journal of Energy Research, 2020, 44, 7831-7840.	4.5	29

#	Article	IF	CITATIONS
37	βâ€molybdenum carbide/carbon nanofibers as a shuttle inhibitor for lithiumâ€sulfur battery with high sulfur loading. International Journal of Energy Research, 2019, 43, 7655.	4.5	19
38	An Effective Porous Activated Carbon Derived from Puffed Corn Employed as the Separator Coating in a Lithium–Sulfur Battery. Energy Technology, 2019, 7, 1900752.	3.8	21
39	Electrospun β-Mo2C/CNFs as an efficient sulfur host for rechargeable lithium sulfur battery. Journal of Materials Science: Materials in Electronics, 2019, 30, 4626-4633.	2.2	29
40	Highâ€performance solid PEO/PPC/LLTOâ€nanowires polymer composite electrolyte for solidâ€state lithium battery. International Journal of Energy Research, 2019, 43, 4854-4866.	4.5	63
41	TiO2 nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle-life lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 788, 639-648.	5.5	105
42	Electrospun zeolitic imidazolate framework-derived nitrogen-doped carbon nanofibers with high performance for lithium-sulfur batteries. International Journal of Energy Research, 2019, 43, 1892-1902.	4.5	92
43	Hydrothermal synthesis of mesoporous MoO2 nanospheres as sulfur matrix for lithium sulfur battery. Journal of Electroanalytical Chemistry, 2019, 833, 441-448.	3.8	64
44	A freestanding MoO ₂ -decorated carbon nanofibers interlayer for rechargeable lithium sulfur battery. International Journal of Energy Research, 2019, 43, 1111-1120.	4.5	106
45	Separator modified with Ketjenblack-In2O3 nanoparticles for long cycle-life lithium-sulfur batteries. Journal of Solid State Electrochemistry, 2019, 23, 645-656.	2.5	22
46	Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries. Electrochimica Acta, 2019, 299, 549-559.	5.2	69
47	In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multi-functional interlayer for excellent lithium-sulfur battery. Electrochimica Acta, 2018, 263, 158-167.	5.2	124
48	Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	32
49	Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications. Beilstein Journal of Nanotechnology, 2018, 9, 262-270.	2.8	19
50	Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 17921-17930.	2.2	64
51	Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7. Journal of Materials Science: Materials in Electronics, 2017, 28, 7264-7270.	2.2	44
52	Hollow spherical Lanthanum oxide coated separator for high electrochemical performance lithium-sulfur batteries. Materials Research Bulletin, 2017, 94, 104-112.	5.2	38
53	Separator modified by Y2O3 nanoparticles-Ketjen Black hybrid and its application in lithium-sulfur battery. Journal of Solid State Electrochemistry, 2017, 21, 3229-3236.	2.5	25
54	Shape-controlled synthesis of Ti4O7 nanostructures under solvothermal-assisted heat treatment and its application in lithium-sulfur batteries. Journal of Alloys and Compounds, 2017, 729, 1136-1144.	5.5	55

#	Article	IF	CITATIONS
55	Poly(3, 4-ethyleendioxythiophene) coated titanium dioxide nanoparticles in situ synthesis and their application for rechargeable lithium sulfur batteries. Electrochimica Acta, 2017, 252, 461-469.	5.2	31
56	High rate lithium-sulfur batteries enabled by mesoporous TiO2 nanotubes prepared by electrospinning. Materials Research Bulletin, 2017, 95, 402-408.	5.2	30
57	Lithium–Sulfur Batteries with High Rate and Cycle Performance by using Multilayered Separators coated with Ketjen Black. Energy Technology, 2017, 5, 623-628.	3.8	36
58	Ketjen Black/Mg0.6Ni0.4O composite coated separator for lithium-sulfur batteries with enhanced electrochemical performance. Materials Letters, 2017, 186, 127-130.	2.6	29
59	Fabrication and Characterization of Non-Woven Carbon Nanofibers as Functional Interlayers for Rechargeable Lithium Sulfur Battery. Journal of Nanoscience and Nanotechnology, 2017, 17, 1857-1862.	0.9	14
60	Photocatalytic Activity of Cuboid WO3 Rods Loaded with AgCl Nanoparticles Under Visible Light Irradiation. Journal of Nanoscience and Nanotechnology, 2017, 17, 5423-5431.	0.9	3
61	A separator modified by spray-dried hollow spherical cerium oxide and its application in lithium sulfur batteries. RSC Advances, 2016, 6, 114989-114996.	3.6	16
62	Mesoporous TiO2 nanosheet with a large amount of exposed {001} facets as sulfur host for high-performance lithium–sulfur batteries. Journal of Solid State Electrochemistry, 2016, 20, 2161-2168.	2.5	21
63	Characterization and mechanism analysis of AgBr mixed cuboid WO ₃ rods with enhanced photocatalytic activity. RSC Advances, 2016, 6, 93436-93444.	3.6	21
64	Zn-MOF derived micro/meso porous carbon nanorod for high performance lithium–sulfur battery. RSC Advances, 2016, 6, 94629-94635.	3.6	35
65	CeO ₂ nanodots decorated ketjen black for high performance lithium–sulfur batteries. RSC Advances, 2016, 6, 111190-111196.	3.6	27
66	Ketjen Black-MnO Composite Coated Separator For High Performance Rechargeable Lithium-Sulfur Battery. Electrochimica Acta, 2016, 192, 346-356.	5.2	122
67	Separator modified by Ketjen black for enhanced electrochemical performance of lithium–sulfur batteries. RSC Advances, 2016, 6, 13680-13685.	3.6	54
68	Mg0.6Ni0.4O hollow nanofibers prepared by electrospinning as additive for improving electrochemical performance of lithium–sulfur batteries. Journal of Alloys and Compounds, 2015, 650, 351-356.	5.5	52
69	Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries. Electrochimica Acta, 2015, 176, 442-447.	5.2	28