
Andreas Stein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1713414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids. , 1998, 281, 538-540.		1,412
2	Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials, 1999, 11, 3302-3308.	6.7	1,235
3	A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organicâ^'Organic Self-Assembly. Chemistry of Materials, 2006, 18, 4447-4464.	6.7	1,005
4	Functionalization of Porous Carbon Materials with Designed Pore Architecture. Advanced Materials, 2009, 21, 265-293.	21.0	807
5	Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites. Chemistry of Materials, 1999, 11, 795-805.	6.7	715
6	Colloidal Assembly: The Road from Particles to Colloidal Molecules and Crystals. Angewandte Chemie - International Edition, 2011, 50, 360-388.	13.8	659
7	Porous Electrode Materials for Lithiumâ€Ion Batteries – How to Prepare Them and What Makes Them Special. Advanced Energy Materials, 2012, 2, 1056-1085.	19.5	594
8	Hierarchical nanofabricationÂofÂmicroporous crystals with ordered mesoporosity. Nature Materials, 2008, 7, 984-991.	27.5	553
9	Tunable Colors in Opals and Inverse Opal Photonic Crystals. Advanced Functional Materials, 2010, 20, 2565-2578.	14.9	504
10	Optical Properties of Inverse Opal Photonic Crystals. Chemistry of Materials, 2002, 14, 3305-3315.	6.7	491
11	Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chemical Society Reviews, 2013, 42, 2763-2803.	38.1	487
12	Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks. Journal of the American Chemical Society, 1999, 121, 4308-4309.	13.7	468
13	Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles. Chemistry of Materials, 2008, 20, 649-666.	6.7	456
14	Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts. Chemistry of Materials, 1998, 10, 467-470.	6.7	454
15	Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC - Trends in Analytical Chemistry, 2016, 76, 102-114.	11.4	409
16	Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society Reviews, 2013, 42, 3721-3739.	38.1	399
17	General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion. Chemistry of Materials, 2000, 12, 1134-1141.	6.7	325
18	Epoxy Toughening with Low Graphene Loading. Advanced Functional Materials, 2015, 25, 575-585.	14.9	301

#	Article	IF	CITATIONS
19	Sphere templating methods for periodic porous solids. Microporous and Mesoporous Materials, 2001, 44-45, 227-239.	4.4	299
20	Ion-Selective Electrodes with Three-Dimensionally Ordered Macroporous Carbon as the Solid Contact. Analytical Chemistry, 2007, 79, 4621-4626.	6.5	255
21	Solution-Phase Grafting of Titanium Dioxide onto the Pore Surface of Mesoporous Silicates:Â Synthesis and Structural Characterization. Chemistry of Materials, 1997, 9, 2842-2851.	6.7	237
22	A Chemical Synthesis of Periodic Macroporous NiO and Metallic Ni. Advanced Materials, 1999, 11, 1003-1006.	21.0	216
23	Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon, 2014, 68, 221-231.	10.3	188
24	Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy. ACS Applied Materials & Interfaces, 2016, 8, 3396-3406.	8.0	175
25	Ion-Selective Electrodes with Colloid-Imprinted Mesoporous Carbon as Solid Contact. Analytical Chemistry, 2014, 86, 7111-7118.	6.5	171
26	Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbonâ^'Carbon Nanocomposites. Chemistry of Materials, 2006, 18, 5543-5553.	6.7	169
27	Surface Modification of Mesoporous, Macroporous, and Amorphous Silica with Catalytically Active Polyoxometalate Clusters. Inorganic Chemistry, 2001, 40, 801-808.	4.0	166
28	Direct Synthesis of Ordered Macroporous Silica Materials Functionalized with Polyoxometalate Clusters. Chemistry of Materials, 2001, 13, 1074-1081.	6.7	159
29	Structural and electrochemical properties of three-dimensionally ordered macroporous tin(iv) oxide films. Journal of Materials Chemistry, 2004, 14, 1616.	6.7	155
30	Three-Dimensionally Ordered Mesoporous (3DOm) Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitors with Ionic Liquid Electrolytes. Chemistry of Materials, 2013, 25, 4137-4148.	6.7	134
31	Colloidal Photonic Crystal Pigments with Low Angle Dependence. ACS Applied Materials & Interfaces, 2010, 2, 3257-3262.	8.0	133
32	Control of Heterogeneity in Nanostructured Ce _{1–<i>x</i>} Zr _{<i>x</i>} O ₂ Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity. Journal of Physical Chemistry C, 2011, 115, 21022-21033.	3.1	127
33	Hybrid macroporous materials for heavy metal ion adsorption. Journal of Materials Chemistry, 2002, 12, 3261-3267.	6.7	126
34	Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes. Microporous and Mesoporous Materials, 2012, 149, 147-157.	4.4	115
35	Morphology Control of Carbon, Silica, and Carbon/Silica Nanocomposites: From 3D Ordered Macro-/Mesoporous Monoliths to Shaped Mesoporous Particles. Chemistry of Materials, 2008, 20, 1029-1040.	6.7	108
36	Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites. Journal of Rheology, 2017, 61, 575-587.	2.6	107

#	Article	IF	CITATIONS
37	Effects of Architecture and Surface Chemistry of Three-Dimensionally Ordered Macroporous Carbon Solid Contacts on Performance of Ion-Selective Electrodes. Analytical Chemistry, 2010, 82, 680-688.	6.5	102
38	Multiconstituent Synthesis of LiFePO4/C Composites with Hierarchical Porosity as Cathode Materials for Lithium Ion Batteries. Chemistry of Materials, 2011, 23, 3237-3245.	6.7	101
39	Colloidal-Crystal-Templated Synthesis of Ordered Macroporous Electrode Materials for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2003, 150, A1102.	2.9	99
40	Synthesis and Properties of Vermiculite-Reinforced Polyurethane Nanocomposites. ACS Applied Materials & Interfaces, 2011, 3, 3709-3717.	8.0	99
41	Influence of Processing Conditions on Structures of 3D Ordered Macroporous Metals Prepared by Colloidal Crystal Templating. Chemistry of Materials, 2001, 13, 4314-4321.	6.7	94
42	Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. Journal of Materials Chemistry, 2008, 18, 2194.	6.7	91
43	Sub-40 nm Zeolite Suspensions via Disassembly of Three-Dimensionally Ordered Mesoporous-Imprinted Silicalite-1. Journal of the American Chemical Society, 2011, 133, 493-502.	13.7	91
44	All-Solid-State Reference Electrodes Based on Colloid-Imprinted Mesoporous Carbon and Their Application in Disposable Paper-based Potentiometric Sensing Devices. Analytical Chemistry, 2015, 87, 2981-2987.	6.5	89
45	Controlling the Shape and Alignment of Mesopores by Confinement in Colloidal Crystals:Â Designer Pathways to Silica Monoliths with Hierarchical Porosity. Langmuir, 2007, 23, 3996-4004.	3.5	88
46	A Disposable Planar Paperâ€Based Potentiometric Ion‣ensing Platform. Angewandte Chemie - International Edition, 2016, 55, 7544-7547.	13.8	88
47	Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to <i>E</i> -Alkenes. Journal of the American Chemical Society, 2018, 140, 15309-15318.	13.7	88
48	Direct Synthesis of Shaped Carbon Nanoparticles with Ordered Cubic Mesostructure. Nano Letters, 2007, 7, 3223-3226.	9.1	85
49	Synthesis and Characterization of Three-Dimensionally Ordered Macroporous Carbon/Titania Nanoparticle Composites. Chemistry of Materials, 2005, 17, 6805-6813.	6.7	84
50	Encapsulation, Stabilization, and Catalytic Properties of Flexible Metal Porphyrin Complexes in MCM-41 with Minimal Electronic Perturbation by the Environment. Journal of Physical Chemistry B, 1998, 102, 4301-4309.	2.6	83
51	Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting. Journal of the American Chemical Society, 2016, 138, 2739-2748.	13.7	83
52	Self-Modification of Spontaneous Emission by Inverse Opal Silica Photonic Crystals. Chemistry of Materials, 2001, 13, 2945-2950.	6.7	80
53	Unsaturated polyester resin toughening with very low loadings of GO derivatives. Polymer, 2017, 110, 149-157.	3.8	75
54	Enhanced Oxidation Kinetics in Thermochemical Cycling of CeO ₂ through Templated Porosity. Journal of Physical Chemistry C, 2013, 117, 1692-1700.	3.1	72

#	Article	IF	CITATIONS
55	Periodic Macroporous Hydroxyapatite-Containing Calcium Phosphates. Chemistry of Materials, 2002, 14, 3326-3331.	6.7	70
56	Facile Preparation and Electrochemical Properties of V2O5-Graphene Composite Films as Free-Standing Cathodes for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2012, 159, A1135-A1140.	2.9	68
57	Perspective on the Influence of Interactions Between Hard and Soft Templates and Precursors on Morphology of Hierarchically Structured Porous Materials. Chemistry of Materials, 2014, 26, 259-276.	6.7	68
58	Growth Patterns and Shape Development of Zeolite Nanocrystals in Confined Syntheses. Journal of the American Chemical Society, 2009, 131, 12377-12383.	13.7	66
59	Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Progress in Solid State Chemistry, 2014, 42, 1-21.	7.2	66
60	Shaping Mesoporous Silica Nanoparticles by Disassembly of Hierarchically Porous Structures. Angewandte Chemie - International Edition, 2007, 46, 1885-1888.	13.8	65
61	Preparation and structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating. Chemical Communications, 2000, , 1477-1478.	4.1	64
62	Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts. Journal of Solid State Electrochemistry, 2009, 13, 123-128.	2.5	63
63	Synergistic Toughening of Epoxy Modified by Graphene and Block Copolymer Micelles. Macromolecules, 2016, 49, 9507-9520.	4.8	63
64	Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. Journal of Applied Electrochemistry, 2016, 46, 441-450.	2.9	63
65	Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. Journal of Materials Science, 2017, 52, 3979-3991.	3.7	62
66	Preparation and Catalytic Evaluation of Macroporous Crystalline Sulfated Zirconium Dioxide Templated with Colloidal Crystals. Chemistry of Materials, 2003, 15, 2638-2645.	6.7	61
67	Effect of a Macropore Structure on Cycling Rates of LiCoO[sub 2]. Journal of the Electrochemical Society, 2005, 152, A1989.	2.9	61
68	Highâ€Performance Randomly Oriented Zeolite Membranes Using Brittle Seeds and Rapid Thermal Processing. Angewandte Chemie - International Edition, 2010, 49, 8699-8703.	13.8	60
69	Synthesis, Characterization, and Ion-Exchange Properties of Zinc and Magnesium Manganese Oxides Confined within MCM-41 Channels. Journal of Physical Chemistry B, 2000, 104, 449-459.	2.6	59
70	Disassembly and Selfâ€Reassembly in Periodic Nanostructures: A Faceâ€Centeredâ€ŧo‣impleâ€Cubic Transformation. Angewandte Chemie - International Edition, 2007, 46, 6666-6669.	13.8	58
71	Solvent Effects on Morphologies of Mesoporous Silica Spheres Prepared by Pseudomorphic Transformations. Chemistry of Materials, 2011, 23, 1761-1767.	6.7	57
72	Preparation and Characterization of Macroporous αâ€Alumina. Journal of the American Ceramic Society, 2003, 86, 1481-1486.	3.8	56

#	Article	IF	CITATIONS
73	Advantages and Limitations of Reference Electrodes with an Ionic Liquid Junction and Three-Dimensionally Ordered Macroporous Carbon as Solid Contact. Analytical Chemistry, 2012, 84, 7771-7778.	6.5	56
74	Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support. Chemistry of Materials, 2016, 28, 6753-6762.	6.7	56
75	Site-Specific Functionalization of Anisotropic Nanoparticles: From Colloidal Atoms to Colloidal Molecules. Journal of the American Chemical Society, 2009, 131, 18548-18555.	13.7	55
76	Graphene-polyethylene nanocomposites: Effect of graphene functionalization. Polymer, 2016, 104, 1-9.	3.8	55
77	Y-doped Li ₈ ZrO ₆ : A Li-Ion Battery Cathode Material with High Capacity. Journal of the American Chemical Society, 2015, 137, 10992-11003.	13.7	54
78	Fabrication of a Fully Infiltrated Three-Dimensional Solid-State Interpenetrating Electrochemical Cell. Journal of the Electrochemical Society, 2007, 154, A1135.	2.9	52
79	Porous Carbon/Tin (IV) Oxide Monoliths as Anodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2008, 155, A658.	2.9	49
80	Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals. Journal of Materials Chemistry, 2011, 21, 10836.	6.7	49
81	Depth-sensing indentation response of ordered silica foam. Journal of Materials Research, 2004, 19, 260-271.	2.6	44
82	Maintaining the Structure of Templated Porous Materials for Reactive and High-Temperature Applications. Langmuir, 2012, 28, 7310-7324.	3.5	42
83	Utilizing ionic liquids for controlled N-doping in hard-templated, mesoporous carbon electrodes for high-performance electrochemical double-layer capacitors. Journal of Power Sources, 2015, 298, 193-202.	7.8	41
84	Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes. Journal of Chemical Physics, 2016, 144, 194702.	3.0	41
85	Anion Exchange Properties of a Mesoporous Aluminophosphate. Langmuir, 1999, 15, 8300-8308.	3.5	40
86	RECENT PROGRESS IN SYNTHESES AND APPLICATIONS OF INVERSE OPALS AND RELATED MACROPOROUS MATERIALS PREPARED BY COLLOIDAL CRYSTAL TEMPLATING. Annual Review of Nano Research, 2006, , 1-79.	0.2	40
87	Inverse Opal SiO ₂ Photonic Crystals as Structurallyâ€Colored Pigments with Additive Primary Colors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 655-662.	1.2	39
88	Batteries take charge. Nature Nanotechnology, 2011, 6, 262-263.	31.5	38
89	A coordination network containing non-coordinating polyoxometalate clusters as counterions. Dalton Transactions, 2003, , 4678.	3.3	36
90	Nanoscale Reactor Engineering: Hydrothermal Synthesis of Uniform Zeolite Particles in Massively Parallel Reaction Chambers. Angewandte Chemie - International Edition, 2008, 47, 9096-9099.	13.8	36

#	Article	IF	CITATIONS
91	Controlling Microstructural Evolution in Pechini Gels through the Interplay between Precursor Complexation, Step-Growth Polymerization, and Template Confinement. Chemistry of Materials, 2013, 25, 745-753.	6.7	36
92	Synthesis of monolithic 3D ordered macroporous carbon/nano-silicon composites by diiodosilane decomposition. Carbon, 2008, 46, 1702-1710.	10.3	35
93	Polyol-Assisted Vermiculite Dispersion in Polyurethane Nanocomposites. ACS Applied Materials & Interfaces, 2013, 5, 3054-3062.	8.0	35
94	Transition-Metal-Doped M-Li ₈ ZrO ₆ (M = Mn, Fe, Co, Ni, Cu, Ce) as High-Specific-Capacity Li-Ion Battery Cathode Materials: Synthesis, Electrochemistry, and Quantum Mechanical Characterization. Chemistry of Materials, 2016, 28, 746-755.	6.7	30
95	Effects of Thermal Processes on the Structure of Monolithic Tungsten and Tungsten Alloy Photonic Crystals. Chemistry of Materials, 2007, 19, 4563-4569.	6.7	28
96	Template-Directed Synthesis and Organization of Shaped Oxide/Phosphate Nanoparticles. Chemistry of Materials, 2010, 22, 3226-3235.	6.7	28
97	In situ high temperature TEM analysis of sintering in nanostructured tungsten and tungsten–molybdenum alloy photonic crystals. Journal of Materials Chemistry, 2010, 20, 1538-1545.	6.7	25
98	Effects of Integrated Carbon as a Light Absorber on the Coloration of Photonic Crystal-Based Pigments. Journal of Physical Chemistry C, 2013, 117, 13585-13592.	3.1	24
99	Metal Nanoparticle–Carbon Matrix Composites with Tunable Melting Temperature as Phase-Change Materials for Thermal Energy Storage. ACS Applied Nano Materials, 2018, 1, 1894-1903.	5.0	24
100	Solid-Contact Ion-Selective and Reference Electrodes Covalently Attached to Functionalized Poly(ethylene terephthalate). Analytical Chemistry, 2020, 92, 7621-7629.	6.5	24
101	Aluminum-containing mesostructural materials. Journal of Porous Materials, 1996, 3, 83-92.	2.6	23
102	Titania–Carbon Nanocomposite Anodes for Lithium Ion Batteries— Effects of Confined Growth and Phase Synergism. ACS Applied Materials & Interfaces, 2014, 6, 18215-18227.	8.0	23
103	Functional Composite Membranes Based on Mesoporous Silica Spheres in a Hierarchically Porous Matrix. Chemistry of Materials, 2010, 22, 3790-3797.	6.7	21
104	In vitro collagen fibril alignment via incorporation of nanocrystalline cellulose. Acta Biomaterialia, 2015, 12, 122-128.	8.3	21
105	Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports. Faraday Discussions, 2017, 201, 287-302.	3.2	21
106	Application and Limitations of Nanocasting in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 2782-2790.	4.0	21
107	Model of the impact of use of thermal energy storage on operation of a nuclear power plant Rankine cycle. Energy Conversion and Management, 2019, 181, 36-47.	9.2	21
108	Quenching Performance of Surfactant-Containing and Surfactant-Free Fluorophore-Doped Mesoporous Silica Films for Nitroaromatic Compound Detection. Chemistry of Materials, 2013, 25, 711-722.	6.7	20

#	Article	IF	CITATIONS
109	A Disposable Planar Paperâ€Based Potentiometric Ionâ€Sensing Platform. Angewandte Chemie, 2016, 128, 7670-7673.	2.0	20
110	Conjugation of Colloidal Clusters and Chains by Capillary Condensation. Journal of the American Chemical Society, 2009, 131, 9920-9921.	13.7	19
111	Modification with tertiary amine catalysts improves vermiculite dispersion in polyurethane via in situ intercalative polymerization. Polymer, 2012, 53, 5060-5068.	3.8	19
112	Paper-Based All-Solid-State Ion-Sensing Platform with a Solid Contact Comprising Colloid-Imprinted Mesoporous Carbon and a Redox Buffer. ACS Applied Nano Materials, 2018, 1, 293-301.	5.0	19
113	Design and synthesis of 3D ordered macroporous ZrO2/Zeolite nanocomposites. Microporous and Mesoporous Materials, 2009, 120, 351-358.	4.4	16
114	Effects of Inorganic Fillers on Toughening of Vinyl Ester Resins by Modified Graphene Oxide. Industrial & Engineering Chemistry Research, 2018, 57, 4592-4599.	3.7	16
115	Raman imaging of surface and sub-surface graphene oxide in fiber reinforced polymer nanocomposites. Carbon, 2019, 143, 793-801.	10.3	16
116	3D Ordered Macroporous Materials. , 0, , 465-493.		15
117	Synthesis of shaped particles and particle arrays by disassembly methods. Journal of Materials Chemistry, 2009, 19, 2102.	6.7	15
118	Generalized Approach to the Microstructure Direction in Metal Oxide Ceramics via Polymerization-Induced Phase Separation. Inorganic Chemistry, 2015, 54, 993-1002.	4.0	15
119	A facile approach to prepare Bi(OH) ₃ nanoflakes as high-performance pseudocapacitor materials. New Journal of Chemistry, 2015, 39, 5927-5930.	2.8	15
120	Nanoparticles in Glass Fiberâ€Reinforced Polyester Composites: Comparing Toughening Effects of Modified Graphene Oxide and Coreâ€ s hell Rubber. Polymer Composites, 2019, 40, E1512-E1524.	4.6	15
121	Three-Dimensionally Ordered Macroporous Mixed Metal Oxide as an Indicator for Monitoring the Stability of ZIF-8. Chemistry of Materials, 2020, 32, 3850-3859.	6.7	15
122	Conduction and Surface Effects in Cathode Materials: Li ₈ ZrO ₆ and Doped Li ₈ ZrO ₆ . Journal of Physical Chemistry C, 2016, 120, 9637-9649.	3.1	14
123	Simulation-Aided Design and Synthesis of Hierarchically Porous Membranes. Langmuir, 2012, 28, 7484-7491.	3.5	13
124	In situ high-temperature electron microscopy of 3DOM cobalt, iron oxide, and nickel. Journal of Materials Science, 2008, 43, 3539-3552.	3.7	12
125	Reference Electrodes Based on Ionic Liquid-Doped Reference Membranes with Biocompatible Silicone Matrixes. ACS Sensors, 2020, 5, 1717-1725.	7.8	12
126	Apatite Converted from 3-D Ordered Macroporous Sol-Gel Bioactive Glass (3DOM-BG) Particles. Journal of the American Ceramic Society, 2005, 88, 587-592.	3.8	11

#	Article	IF	CITATIONS
127	Modified-Graphene-Oxide-Containing Styrene Masterbatches for Thermosets. Industrial & Engineering Chemistry Research, 2017, 56, 11443-11450.	3.7	10
128	Extending the Compositional Range of Nanocasting in the Oxozirconium Cluster-Based Metal–Organic Framework NU-1000—A Comparative Structural Analysis. Chemistry of Materials, 2018, 30, 1301-1315.	6.7	10
129	Effects of Phase Purity and Pore Reinforcement on Mechanical Behavior of NU-1000 and Silica-Infiltrated NU-1000 Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 49971-49981.	8.0	10
130	Anionic Oxygen Redox in the High-Lithium Material Li ₈ SnO ₆ . Chemistry of Materials, 2021, 33, 834-844.	6.7	10
131	Temperature-dependent mechanical behavior of three-dimensionally ordered macroporous tungsten. Journal of Materials Research, 2020, 35, 2556-2566.	2.6	8
132	Regenerable Sorbent Pellets for the Removal of Dilute H ₂ S from Claus Process Tail Gas. Industrial & Engineering Chemistry Research, 2021, 60, 18443-18451.	3.7	8
133	Synthetic approaches toward tungsten photonic crystals for thermal emission. , 2005, 6005, 9.		7
134	Direct Synthesis and Pseudomorphic Transformation of Mixed Metal Oxide Nanostructures with Non loseâ€Packed Hollow Sphere Arrays. Angewandte Chemie - International Edition, 2018, 57, 15707-15711.	13.8	7
135	Synthesis of Porous Transition Metal Oxides by the Salt-Gel Method. Materials Research Society Symposia Proceedings, 1994, 371, 69.	0.1	6
136	High-Capacity Regenerable H2S Sorbent for Reducing Sulfur Emissions. Industrial & Engineering Chemistry Research, 0, , .	3.7	6
137	Diffusive Formation of Hollow Mesoporous Silica Shells from Core–Shell Composites: Insights from the Hydrogen Sulfide Capture Cycle of CuO@mSiO ₂ Nanoparticles. Langmuir, 2020, 36, 6540-6549.	3.5	6
138	The Suggestion Box-An Old Idea Brings the "Real World" Back to Freshman Chemistry Students (and) Tj ETQq0 0 (ΩrgBT /Ον	erlock 10 Tf
139	Thin films with a hidden twist. Nature, 2010, 468, 387-388.	27.8	4
140	Effective Electrochemical Charge Storage in the High-Lithium Compound Li ₈ ZrO ₆ . ACS Applied Energy Materials, 2019, 2, 1274-1287.	5.1	4
141	3D Periodic and Interpenetrating Tungsten–Silicon Oxycarbide Nanocomposites Designed for Mechanical Robustness. ACS Applied Materials & Interfaces, 2021, 13, 32126-32135.	8.0	4
142	Surface functionalization of templated porous carbon materials. Studies in Surface Science and Catalysis, 2007, 165, 365-368.	1.5	3
143	Synthesis of lamellar isobutyl silicates and dispersion in polypropylene melts. Journal of Applied Polymer Science, 2007, 105, 1456-1465.	2.6	3
144	Direct Synthesis and Pseudomorphic Transformation of Mixed Metal Oxide Nanostructures with Nonâ€Closeâ€Packed Hollow Sphere Arrays. Angewandte Chemie, 2018, 130, 15933-15937.	2.0	3

#	Article	IF	CITATIONS
145	Li ₈ MnO ₆ : A Novel Cathode Material with Only Anionic Redox. ACS Applied Materials & Interfaces, 2022, 14, 29832-29843.	8.0	2
146	Effect of primary particle size and aggregate size of modified graphene oxide on toughening of unsaturated polyester resin. Polymer Composites, 2019, 40, 3886-3894.	4.6	1
147	Nano goes the distance. Nature Materials, 2021, 20, 1456-1458.	27.5	1
148	Inside Cover: Nanoscale Reactor Engineering: Hydrothermal Synthesis of Uniform Zeolite Particles in Massively Parallel Reaction Chambers (Angew. Chem. Int. Ed. 47/2008). Angewandte Chemie - International Edition, 2008, 47, 8970-8970.	13.8	0
149	Innentitelbild: Nanoscale Reactor Engineering: Hydrothermal Synthesis of Uniform Zeolite Particles in Massively Parallel Reaction Chambers (Angew. Chem. 47/2008). Angewandte Chemie, 2008, 120, 9106-9106.	2.0	Ο
150	Batteries: The Effect of Porosity. , 2021, , 205-321.		0
151	SHAPED METAL OXIDE-PHOSPHATE COMPOSITE NANOPARTICLES SYNTHESIZED BY TEMPLATED DISASSEMBLY. , 2008, , .		Ο
152	Colloidal crystal templating of porous materials. , 2021, , .		0