
Ivo Rieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1712942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Salicylic Acid Level Improves Pollen Development Under Long-Term Mild Heat Conditions in Tomato. Frontiers in Plant Science, 2022, 13, 828743.	1.7	6
2	Redoxâ€engineering enhances maize thermotolerance and grain yield in the field. Plant Biotechnology Journal, 2022, 20, 1819-1832.	4.1	13
3	Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica, 2018, 214, 1.	0.6	37
4	A disturbed auxin signaling affects adventitious root outgrowth in Solanum dulcamara under complete submergence. Journal of Plant Physiology, 2018, 224-225, 11-18.	1.6	20
5	Interactive Responses of Solanum Dulcamara to Drought and Insect Feeding are Herbivore Species-Specific. International Journal of Molecular Sciences, 2018, 19, 3845.	1.8	17
6	The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genomics, 2018, 19, 447.	1.2	68
7	Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum) Tj ETQq1 1 0.784314	4 rgBT /Ov 1 . 0	erlock 10 Tf
8	Pollen Development at High Temperature: From Acclimation to Collapse. Plant Physiology, 2017, 173, 1967-1976.	2.3	145
9	Transcriptomic responses of <i>Solanum dulcamara</i> to natural and simulated herbivory. Molecular Ecology Resources, 2017, 17, e196-e211.	2.2	44
10	Screening for pollen tolerance to high temperatures in tomato. Euphytica, 2017, 213, 1.	0.6	64
11	Untargeted metabolomic analysis of tomato pollen development and heat stress response. Plant Reproduction, 2017, 30, 81-94.	1.3	75
12	Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica, 2017, 213, 1.	0.6	70
13	A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in <i>Solanum</i> dulcamara. Plant Physiology, 2016, 170, 2351-2364.	2.3	80
14	Drought and flooding have distinct effects on herbivoreâ€induced responses and resistance in <i>Solanum dulcamara</i> . Plant, Cell and Environment, 2016, 39, 1485-1499.	2.8	59
15	Acclimation to high temperature during pollen development. Plant Reproduction, 2016, 29, 107-118.	1.3	93
16	How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology, 2016, 91, 727-740.	2.0	299
17	Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction, 2016, 29, 67-79.	1.3	175
18	Epigenetic events in plant male germ cell heat stress responses. Plant Reproduction, 2016, 29, 21-29.	1.3	32

Ivo Rieu

#	Article	IF	CITATIONS
19	High-Temperature-Induced Defects in Tomato (Solanum lycopersicum) Anther and Pollen Development Are Associated with Reduced Expression of B-Class Floral Patterning Genes. PLoS ONE, 2016, 11, e0167614.	1.1	33
20	Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat. Frontiers in Plant Science, 2015, 6, 999.	1.7	166
21	Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. Journal of Experimental Botany, 2015, 66, 3405-3416.	2.4	112
22	<scp>BURSTING POLLEN</scp> is required to organize the pollen germination plaque and pollen tube tip in <i>Arabidopsis thaliana</i> . New Phytologist, 2015, 206, 255-267.	3.5	28
23	Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening. Frontiers in Plant Science, 2014, 5, 466.	1.7	19
24	Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AoB PLANTS, 2014, 6, .	1.2	59
25	Genomic analysis of the native European Solanum species, S. dulcamara. BMC Genomics, 2013, 14, 356.	1.2	25
26	Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development. Plants, 2013, 2, 489-506.	1.6	162
27	Comparative next-generation mapping of the Phytophthora infestans resistance gene Rpi-dlc2 in a European accession of Solanum dulcamara. Theoretical and Applied Genetics, 2013, 126, 59-68.	1.8	12
28	Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Frontiers in Plant Science, 2013, 4, 315.	1.7	323
29	ABA-deficiency results in reduced plant and fruit size in tomato. Journal of Plant Physiology, 2012, 169, 878-883.	1.6	97
30	Real-Time Quantitative RT-PCR: Design, Calculations, and Statistics. Plant Cell, 2009, 21, 1031-1033.	3.1	394
31	Signaling pathways maintaining stem cells at the plant shoot apex. Seminars in Cell and Developmental Biology, 2009, 20, 1083-1088.	2.3	26
32	The gibberellin biosynthetic genes <i>AtGA20ox1</i> and <i>AtGA20ox2</i> act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant Journal, 2008, 53, 488-504.	2.8	333
33	Reduced gibberellin response affects ethylene biosynthesis and responsiveness in the Arabidopsis <i>gai eto2â€l </i> double mutant. New Phytologist, 2008, 177, 128-141.	3.5	17
34	Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 2420-2436.	3.1	269
35	Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. Journal of Experimental Botany, 2007, 58, 4269-4281.	2.4	64
36	Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis Â. Plant Cell, 2007, 18, 3399-3414.	3.1	665

Ivo Rieu

#	Article	IF	CITATIONS
37	KNOX Action in Arabidopsis Is Mediated by Coordinate Regulation of Cytokinin and Gibberellin Activities. Current Biology, 2005, 15, 1560-1565.	1.8	614
38	RP-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production. Journal of Experimental Botany, 2005, 56, 841-849.	2.4	42
39	Isolation and Expression Analysis of a Tobacco AINTEGUMENTA Ortholog (NtANTL). Plant and Cell Physiology, 2005, 46, 803-805.	1.5	17
40	Gibberellin Metabolism and Signaling. Vitamins and Hormones, 2005, 72, 289-338.	0.7	83
41	Ethylene regulates the timing of anther dehiscence in tobacco. Planta, 2003, 217, 131-137.	1.6	78
42	Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses. Journal of Experimental Botany, 2003, 54, 2239-2244.	2.4	51
43	Long-Term Mild Heat Causes Post-Mitotic Pollen Abortion Through a Local Effect on Flowers. Frontiers in Plant Science, 0, 13, .	1.7	1