Yong-Hong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1712858/publications.pdf

Version: 2024-02-01

623734 713466 45 576 14 citations h-index papers

g-index 48 48 48 778 docs citations times ranked citing authors all docs

21

#	Article	IF	CITATIONS
1	A new cyclopeptide alkaloid from <i>Clematis Florida</i> . Natural Product Research, 2022, 36, 1693-1699.	1.8	3
2	Three new phomalone derivatives from a deep-sea-derived fungus <i>Alternaria </i> sp. MCCC 3A00467. Natural Product Research, 2022, 36, 414-418.	1.8	11
3	Identification of potential therapeutic targets and mechanisms of COVID-19 through network analysis and screening of chemicals and herbal ingredients. Briefings in Bioinformatics, 2022, 23, .	6.5	14
4	LncRNA TARID induces cell proliferation through cell cycle pathway associated with coronary artery disease. Molecular Biology Reports, 2022, 49, 4573-4581.	2.3	2
5	The <i>inÂvitro</i> and <i>inÂvivo</i> anti-inflammatory activities of triterpene saponins from <i>Clematis florida</i> . Natural Product Research, 2021, 35, 6180-6183.	1.8	5
6	Molecular dynamics simulation and binding free energy calculations of microcin J25 binding to the FhuA receptor. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2585-2594.	3.5	5
7	Biomimetic microbioreactor-supramolecular nanovesicles improve enzyme therapy of hepatic cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 31, 102311.	3.3	2
8	Six flavonoids inhibit the antigenicity of \hat{l}^2 -lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study. Food Chemistry, 2021, 339, 128106.	8.2	41
9	Complex coacervation behavior and the mechanism between rice glutelin and gum arabic at pH 3.0 studied by turbidity, light scattering, fluorescence spectra and molecular docking. LWT - Food Science and Technology, 2021, 150, 112084.	5.2	12
10	Prediction of Blood-Brain Barrier Permeability of Compounds by Fusing Resampling Strategies and eXtreme Gradient Boosting. IEEE Access, 2021, 9, 9557-9566.	4.2	11
11	Computational insight into the conformational transition of human toll-like receptor 8 in the agonist-induced activation processes. Journal of Biomolecular Structure and Dynamics, 2020, 38, 5537-5543.	3.5	2
12	Probing the Mechanism of Hepatotoxicity of Hexabromocyclododecanes through Toxicological Network Analysis. Environmental Science & Environmental Scien	10.0	18
13	Effect of processing on the reduction of pesticide residues in a traditional Chinese medicine (TCM). Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 1156-1164.	2.3	13
14	Cytomembrane-mimicking nanocarriers with a scaffold consisting of a CD44-targeted endogenous component for effective asparaginase supramolecule delivery. Nanoscale, 2020, 12, 12083-12097.	5.6	13
15	Biomimetic Membrane-Structured Nanovesicles Carrying a Supramolecular Enzyme to Cure Lung Cancer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31112-31123.	8.0	16
16	Biomimetic polysaccharide-cloaked lipidic nanovesicles/microassemblies for improving the enzymatic activity and prolonging the action time for hyperuricemia treatment. Nanoscale, 2020, 12, 15222-15235.	5.6	14
17	Phospholipid/hydroxypropyl- \hat{l}^2 -cyclodextrin supramolecular complexes are promising candidates for efficient oral delivery of curcuminoids. International Journal of Pharmaceutics, 2020, 582, 119301.	5.2	14
18	Anti-cancer Effects of a Neutral Triterpene Fraction from Ganoderma lucidum and its Active Constituents on SW620 Human Colorectal Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 237-244.	1.7	26

#	Article	lF	Citations
19	Effects of Daily Mastication on Bone Remodeling With Implant-Tooth-Supported Fixed Partial Prosthesis: A Finite Element Study. IEEE Access, 2019, 7, 33851-33858.	4.2	4
20	p â€Synephrine exhibits antiâ€adipogenic activity by activating the Akt/GSK3β signaling pathway in 3T3‣1 adipocytes. Journal of Food Biochemistry, 2019, 43, e13033.	2.9	15
21	Population Scale Retrospective Analysis Reveals Potential Risk of Cholestasis in Pregnant Women Taking Omeprazole, Lansoprazole, and Amoxicillin. Interdisciplinary Sciences, Computational Life Sciences, 2019, 11, 273-281.	3.6	6
22	Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Interdisciplinary Sciences, Computational Life Sciences, 2019, 11, 77-85.	3.6	18
23	A new indole-type alkaloid from the roots of Clematis florida var. plena. Natural Product Research, 2019, 33, 2925-2931.	1.8	6
24	Two new phenylspirodrimanes from the deep-sea derived fungus Stachybotrys sp. MCCC 3A00409. Natural Product Research, 2019, 33, 386-392.	1.8	18
25	Discovery, gene modification, and optimization of fermentation of an enduracidin-producing strain. Journal of Asian Natural Products Research, 2018, 20, 633-648.	1.4	1
26	Novel enzyme formulations for improved pharmacokinetic properties and anti-inflammatory efficacies. International Journal of Pharmaceutics, 2018, 537, 268-277.	5.2	9
27	A New Steroid Ester from the Leaves of Melia azedarach. Chemistry of Natural Compounds, 2018, 54, 921-925.	0.8	2
28	Diterpenoids from <i>Wedelia prostrata </i> and Their Derivatives and Cytotoxic Activities. Chemistry and Biodiversity, 2017, 14, e1600423.	2.1	5
29	Comprehensive Interactions of <scp>ACE</scp> Inhibitors With Their Receptor by a Support Vector Machine Model and Molecular Docking. Journal of the Chinese Chemical Society, 2017, 64, 310-320.	1.4	5
30	Predicting trend of early childhood caries in mainland China: a combined meta-analytic and mathematical modelling approach based on epidemiological surveys. Scientific Reports, 2017, 7, 6507.	3.3	12
31	<i>Morinda Officinalis</i> Polysaccharides Stimulate Hypothalamic GnRH Secretion in Varicocele Progression. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-12.	1.2	8
32	Theoretical Studies of Intracellular Concentration of Micro-organisms' Metabolites. Scientific Reports, 2017, 7, 9048.	3.3	5
33	Novel nanoemulsion based lipid nanosystems for favorable in vitro and in vivo characteristics of curcumin. International Journal of Pharmaceutics, 2016, 504, 80-88.	5.2	42
34	Recent progresses of simulations on passive membrane permeations in China. Molecular Simulation, 2016, 42, 799-808.	2.0	1
35	Four New Tirucallane Triterpenoids from the Fruits of <i>Melia azedarach</i> and Their Cytotoxic Activities. Chemistry and Biodiversity, 2016, 13, 1738-1746.	2.1	19
36	A New Ursane Triterpenoid Possessing Cytotoxicity from the Fruits of Vitex trifolia var. simplicifolia. Chemistry of Natural Compounds, 2016, 52, 660-663.	0.8	9

#	ARTICLE	IF	CITATIONS
37	TLR4 signaling mediates AP-1 activation in an MPTP-induced mouse model of Parkinson's disease. International Immunopharmacology, 2016, 32, 96-102.	3.8	17
38	Semi-Synthesis of Kaurenoic Acid Derivatives and Their In Vitro Cytotoxic Activities. Planta Medica Letters, 2015, 2, e48-e51.	0.2	1
39	A Hydroxylated Lupeol-Based Triterpenoid Ester Isolated from theScurrula parasiticaParasitic onNerium indicum. Helvetica Chimica Acta, 2015, 98, 627-632.	1.6	8
40	Prediction of Placental Barrier Permeability: A Model Based on Partial Least Squares Variable Selection Procedure. Molecules, 2015, 20, 8270-8286.	3.8	23
41	Destabilization of Alzheimer's Aβ42 Protofibrils with a Novel Drug Candidate wgx-50 by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2015, 119, 11196-11202.	2.6	69
42	Improved feature-based prediction of SNPs in human cytochrome P450 enzymes. Interdisciplinary Sciences, Computational Life Sciences, 2015, 7, 65-77.	3.6	9
43	A New Taraxastaneâ€√ype Triterpene from <i>Vitex trifolia</i> var. <i>simplicifolia</i> . Helvetica Chimica Acta, 2013, 96, 2040-2045.	1.6	21
44	A new inositol derivative from <i>Prenanthes macrophylla</i> Iournal of Asian Natural Products Research, 2012, 14, 182-185.	1.4	1
45	Prediction of blood–brain partitioning: A model based on molecular electronegativity distance vector descriptors. Journal of Molecular Graphics and Modelling, 2010, 29, 214-220.	2.4	17