Antoine Ghauch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1712646/publications.pdf

Version: 2024-02-01

42 papers 3,706 citations

172207 29 h-index 276539 41 g-index

42 all docs 42 docs citations

times ranked

42

2574 citing authors

#	Article	IF	CITATIONS
1	Iron-based metal organic framework MIL-88-A for the degradation of naproxen in water through persulfate activation. Chemical Engineering Journal, 2021, 405, 126701.	6.6	103
2	Degradation of theophylline in a UV254/PS system: Matrix effect and application to a factory effluent. Chemical Engineering Journal, 2020, 380, 122478.	6.6	85
3	Data for persulfate activation by UV light to degrade theophylline in a water effluent. Data in Brief, 2019, 27, 104614.	0.5	4
4	Chemically and thermally activated persulfate for theophylline degradation and application to pharmaceutical factory effluent. RSC Advances, 2019, 9, 33472-33485.	1.7	63
5	A rapid and economical method for the quantification of hydrogen peroxide (H2O2) using a modified HPLC apparatus. Science of the Total Environment, 2019, 654, 107-117.	3.9	70
6	Rapid quantification of persulfate in aqueous systems using a modified HPLC unit. Talanta, 2018, 178, 237-245.	2.9	48
7	Degradation of a Toxic Molecule o-Toluidine in Industrial Effluents using UV ₂₅₄ /PS System. Journal of Advanced Oxidation Technologies, 2018, 21, 261-273.	0.5	21
8	A comparative study of the common persulfate activation techniques for the complete degradation of an NSAID: The case of ketoprofen. Chemical Engineering Journal, 2018, 350, 395-410.	6.6	134
9	Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chemical Engineering Journal, 2017, 317, 1012-1025.	6.6	278
10	Editorial: The importance of advanced oxidation processes in degrading persistent pollutants. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	1
11	A biological, chemical and pharmaceutical analysis of distillate quality from solar stills. Energy Procedia, 2017, 119, 723-732.	1.8	16
12	The fate of selected pharmaceuticals in solar stills: Transfer, thermal degradation or photolysis?. Science of the Total Environment, 2017, 574, 583-593.	3.9	13
13	Ranitidine abatement in chemically activated persulfate systems: Assessment of industrial iron waste for sustainable applications. Chemical Engineering Journal, 2016, 288, 276-288.	6.6	157
14	Naproxen abatement by thermally activated persulfate in aqueous systems. Chemical Engineering Journal, 2015, 279, 861-873.	6.6	210
15	Assessment of bimetallic and trimetallic iron-based systems for persulfate activation: Application to sulfamethoxazole degradation. Chemical Engineering Journal, 2014, 256, 280-292.	6.6	257
16	Degradation of sulfamethoxazole by persulfate assisted micrometric FeO in aqueous solution. Chemical Engineering Journal, 2013, 228, 1168-1181.	6.6	284
17	Modeling the Permeability Loss of Metallic Iron Water Filtration Systems. Clean - Soil, Air, Water, 2013, 41, 275-282.	0.7	87
18	Methylene blue discoloration by heated persulfate in aqueous solution. Chemical Engineering Journal, 2012, 213, 259-271.	6.6	159

#	Article	IF	CITATIONS
19	Ibuprofen removal by heated persulfate in aqueous solution: A kinetics study. Chemical Engineering Journal, 2012, 197, 483-492.	6.6	281
20	Oxidation of bisoprolol in heated persulfate/H2O systems: Kinetics and products. Chemical Engineering Journal, 2012, 183, 162-171.	6.6	336
21	Fe0-based trimetallic systems for the removal of aqueous diclofenac: Mechanism and kinetics. Chemical Engineering Journal, 2011, 172, 1033-1044.	6.6	103
22	Degradation of aqueous carbamazepine in ultrasonic/FeO/H2O2 systems. Chemical Engineering Journal, 2011, 172, 18-27.	6.6	127
23	Investigating the mechanism of clofibric acid removal in FeO/H2O systems. Journal of Hazardous Materials, 2010, 176, 48-55.	6.5	47
24	Response to Dr. FraÅ"ska's comments on the paper "Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles.―Ghauch etÂal. (2009) Environmental Pollution 157, 1626–1635. Environmental Pollution, 2010, 158, 3030-3031.	3.7	1
25	Aqueous removal of diclofenac by plated elemental iron: Bimetallic systems. Journal of Hazardous Materials, 2010, 182, 64-74.	6.5	103
26	Reductive destruction and decontamination of aqueous solutions of chlorinated antimicrobial agent using bimetallic systems. Journal of Hazardous Materials, 2009, 164, 665-674.	6.5	38
27	Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environmental Pollution, 2009, 157, 1626-1635.	3.7	231
28	Rapid removal of flutriafol in water by zero-valent iron powder. Chemosphere, 2008, 71, 816-826.	4.2	41
29	Discussion of Chicgoua Noubactep on "Removal of thiobencarb in aqueous solution by zero valent iron―by Md. Nurul Amin et al. [Chemosphere 70 (3) (2008) 511–515]. Chemosphere, 2008, 72, 328-331.	4.2	9
30	Catalytic degradation of chlorothalonil in water using bimetallic iron-based systems. Chemosphere, 2008, 73, 751-759.	4.2	61
31	Use of FTIR spectroscopy coupled with ATR for the determination of atmospheric compounds. Talanta, 2006, 68, 1294-1302.	2.9	28
32	Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere, 2001, 43, 1109-1117.	4.2	71
33	Water quality monitoring using a smart sensing system. Measurement: Journal of the International Measurement Confederation, 2000, 28, 219-224.	2.5	69
34	Determination of carbaryl and biphenyl through optical fiber ccd-assisted flash lamp induced room temperature phosphorescence. Fresenius' Journal of Analytical Chemistry, 2000, 367, 545-550.	1.5	9
35	Room temperature phosphorescence analyses of polycyclic aromatic hydrocarbons using an imaging sensing system combined with a bifurcated optical fiber and a cooled charge coupled device detector. Talanta, 2000, 51, 807-816.	2.9	29
36	Remediation of s-triazines contaminated water in a laboratory scale apparatus using zero-valent iron powder. Chemosphere, 2000, 41, 1835-1843.	4.2	33

#	Article	IF	CITATIONS
37	Use of an Imaging Spectrograph System with a Fiber Optical Sensor and Two Dimensional Cooled Ccd Detector For Solid Surface Room Temperature Phosphorescence of Pesticides. Analytical Letters, 2000, 33, 709-728.	1.0	3
38	Cleaning of water contaminated by heavy metals using beetroot fibers as biofilter. Toxicological and Environmental Chemistry, 2000, 75, 89-97.	0.6	4
39	An effect of n-alkyl chain on the fluorescence of 9-alkylphenanthrene and 9-hexylpyrene crystals. Journal of Luminescence, 1999, 85, 163-169.	1.5	4
40	Quantitative measurements of ammonium, hydrogenophosphate and Cu(II) by diffuse reflectance spectrometry. Talanta, 1999, 48, 385-392.	2.9	37
41	Rapid treatment of water contamined with atrazine and parathion with zero-valent iron. Chemosphere, 1999, 39, 1309-1315.	4.2	45
42	Submicrometric Iron Particles for the Removal of Pharmaceuticals from Water: Application to b-Lactam Antibiotics. Advanced Materials Research, 0, 324, 485-488.	0.3	6