Yotsanan Meemark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1712569/publications.pdf

Version: 2024-02-01

24 141 6
papers citations h-index

6 12
h-index g-index

24 24 all docs docs citations

24 times ranked 52 citing authors

#	Article	IF	CITATIONS
1	Subconstituents of unitary Cayley graph of matrix algebras. Finite Fields and Their Applications, 2022, 80, 102004.	1.0	3
2	Algebraic degree of spectra of Cayley hypergraphs. Discrete Applied Mathematics, 2022, 316, 87-94.	0.9	2
3	Mahler measures of a family of non-tempered polynomials and Boydâ \in ™s conjectures. Research in Mathematical Sciences, 2020, 7, 1.	1.0	3
4	Approximately Mutually Unbiased Bases by Frobenius Rings. Journal of Systems Science and Complexity, 2020, 33, 1244-1251.	2.8	0
5	Unitary Cayley graphs of matrix rings over finite commutative rings. Finite Fields and Their Applications, 2020, 65, 101689.	1.0	7
6	Generalized symplectic graphs and generalized orthogonal graphs over finite commutative rings. Linear and Multilinear Algebra, 2019, 67, 2427-2450.	1.0	3
7	Perfect state transfer in unitary Cayley graphs and gcd-graphs. Linear and Multilinear Algebra, 2019, 67, 39-50.	1.0	6
8	Euler quotients and Wilson quotients for polynomials over finite local rings. Journal of Algebra and Its Applications, 2018, 17, 1850152.	0.4	0
9	Algebraic Cayley graphs over finite local rings. Finite Fields and Their Applications, 2017, 48, 227-240.	1.0	0
10	Orthogonal graphs over finite commutative rings of odd characteristic. Finite Fields and Their Applications, 2016, 40, 26-45.	1.0	4
11	CAYLEY GRAPHS OVER A FINITE CHAIN RING AND GCD-GRAPHS. Bulletin of the Australian Mathematical Society, 2016, 93, 353-363.	0.5	2
12	BALANCED UNITARY CAYLEY SIGRAPHS OVER FINITE COMMUTATIVE RINGS. Journal of Algebra and Its Applications, 2014, 13, 1350152.	0.4	2
13	Symplectic graphs over finite commutative rings. European Journal of Combinatorics, 2014, 41, 298-307.	0.8	8
14	Symplectic graphs over finite local rings. European Journal of Combinatorics, 2013, 34, 1114-1124.	0.8	8
15	The digraph of the kth power mapping of the quotient ring of polynomials over finite fields. Finite Fields and Their Applications, 2012, 18, 179-191.	1.0	5
16	On symplectic graphs modulo <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>n<td>:ml}·7/mm</td><td>ıl:mrow></td></mml:mi></mml:mrow></mml:msup></mml:math>	:ml}·7/mm	ıl:mrow>
17	Energy of unitary Cayley graphs and gcd-graphs. Linear Algebra and Its Applications, 2011, 435, 1336-1343.	0.9	50
18	THE DIGRAPH OF THE SQUARE MAPPING ON QUOTIENT RINGS OVER THE GAUSSIAN INTEGERS. International Journal of Number Theory, 2011, 07, 835-852.	0.5	1

#	Article	IF	CITATIONS
19	The quadratic digraph on polynomial rings over finite fields. Finite Fields and Their Applications, 2010, 16, 334-346.	1.0	7
20	Lerch's Theorems over Function Fields. Integers, 2010, 10, .	0.3	1
21	An equivalence relation on a set of words of finite length. European Journal of Combinatorics, 2009, 30, 788-797.	0.8	O
22	Hecke operators on Drinfeld cusp forms. Journal of Number Theory, 2008, 128, 1941-1965. Ramanujan graphs on cosets of kmml:math altimg="sil.gif" overflow="scroll" and the state of the st	0.4	8
23	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xmi/ja/dtd" xmlns:ja="http://www.elsevier.com/xmi/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xmi/common/table/dtd" xmlns:sb="http://www.elsevier.com/xmi/common/struct-bib/dtd"	1.0	6
24	xmins:so="http://www.elsevier.com/xmi/common/struce-blo/dtd" xmlns:ce="http://www.elsevier.com/x Eigenvalues of zero divisor graphs of principal ideal rings. Linear and Multilinear Algebra, 0, , 1-15.	1.0	0