
Andrew R Leitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1712539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One thousand plant transcriptomes and theÂphylogenomics of green plants. Nature, 2019, 574, 679-685.	13.7	1,162
2	Genomic Plasticity and the Diversity of Polyploid Plants. Science, 2008, 320, 481-483.	6.0	755
3	In Situ Localization of Parental Genomes in a Wide Hybrid. Annals of Botany, 1989, 64, 315-324.	1.4	529
4	Extensive chromosomal variation in a recently formed natural allopolyploid species, <i>Tragopogon miscellus</i> (Asteraceae). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1176-1181.	3.3	333
5	The Ups and Downs of Genome Size Evolution in Polyploid Species of Nicotiana (Solanaceae). Annals of Botany, 2008, 101, 805-814.	1.4	294
6	Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theoretical and Applied Genetics, 1992, 84-84, 778-786.	1.8	242
7	Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma, 2000, 109, 245-258.	1.0	211
8	Rapid Concerted Evolution of Nuclear Ribosomal DNA in Two Tragopogon Allopolyploids of Recent and Recurrent OriginSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY458586, AY458588, AY458589, and AY458587. Genetics, 2005, 169, 931-944.	1.2	209
9	Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Molecular Phylogenetics and Evolution, 2004, 33, 75-90.	1.2	197
10	Discrimination between closely related Triticeae species using genomic DNA as a probe. Theoretical and Applied Genetics, 1990, 79, 721-728.	1.8	194
11	Longâ€ŧerm genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytologist, 2005, 168, 241-252.	3.5	173
12	Rapid Chromosome Evolution in Recently Formed Polyploids in Tragopogon (Asteraceae). PLoS ONE, 2008, 3, e3353.	1.1	173
13	Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	168
14	Genome evolution in allotetraploid Nicotiana. Biological Journal of the Linnean Society, 2004, 82, 599-606.	0.7	163
15	Sequence of events leading to near omplete genome turnover in allopolyploid Nicotiana within five million years. New Phytologist, 2007, 175, 756-763.	3.5	158
16	Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist, 2012, 194, 629-646.	3.5	158
17	Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biological Journal of the Linnean Society, 2004, 82, 615-625.	0.7	154
18	Is post-polyploidization diploidization the key to the evolutionary success of angiosperms?. Botanical Journal of the Linnean Society, 2016, 180, 1-5.	0.8	154

#	Article	IF	CITATIONS
19	A genome for gnetophytes and early evolution of seed plants. Nature Plants, 2018, 4, 82-89.	4.7	151
20	Next Generation Sequencing Reveals Genome Downsizing in Allotetraploid Nicotiana tabacum, Predominantly through the Elimination of Paternally Derived Repetitive DNAs. Molecular Biology and Evolution, 2011, 28, 2843-2854.	3.5	150
21	Evolution of rDNA in Nicotiana Allopolyploids: A Potential Link between rDNA Homogenization and Epigenetics. Annals of Botany, 2008, 101, 815-823.	1.4	148
22	Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytologist, 2010, 186, 135-147.	3.5	146
23	Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytologist, 2005, 166, 291-303.	3.5	143
24	Telomeres in evolution and evolution of telomeres. Chromosome Research, 2005, 13, 469-479.	1.0	142
25	Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma, 2000, 109, 161-172.	1.0	139
26	Cytogenetic features of <scp>rRNA</scp> genes across land plants: analysis of the Plant <scp>rDNA</scp> database. Plant Journal, 2017, 89, 1020-1030.	2.8	133
27	Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity, 1990, 65, 385-392.	1.2	132
28	Genomic Repeat Abundances Contain Phylogenetic Signal. Systematic Biology, 2015, 64, 112-126.	2.7	126
29	Analysis of the giant genomes of <i><scp>F</scp>ritillaria</i> (<scp>L</scp> iliaceae) indicates that a lack of <scp>DNA</scp> removal characterizes extreme expansions in genome size. New Phytologist, 2015, 208, 596-607.	3.5	122
30	Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. New Phytologist, 2016, 210, 1195-1206.	3.5	117
31	Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma, 1991, 101, 206-213.	1.0	116
32	Diploidization and genome size change in allopolyploids is associated with differential dynamics of low―and high opy sequences. Plant Journal, 2013, 74, 829-839.	2.8	112
33	The origin of tobacco's T genome is traced to a particular lineage within <i>Nicotiana tomentosiformis</i> (Solanaceae). American Journal of Botany, 2002, 89, 921-928.	0.8	108
34	The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant Journal, 2003, 34, 283-291.	2.8	106
35	Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity, 2002, 88, 19-25.	1.2	99
36	Molecular cytogenetic analysis of recently evolved <i>Tragopogon</i> (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. American Journal of Botany, 2004, 91, 1022-1035.	0.8	99

3

#	Article	IF	CITATIONS
37	Genome Size Diversity and Evolution in Land Plants. , 2013, , 307-322.		99
38	Physical mapping of plant DNA sequences by simultaneous <i>in situ</i> hybridization of two differently labelled fluorescent probes. Genome, 1991, 34, 329-333.	0.9	98
39	Nuclear glutamine synthetase evolution in Nicotiana: Phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Molecular Phylogenetics and Evolution, 2010, 55, 99-112.	1.2	96
40	Ribosomal DNA evolution and phylogeny inAloe(Asphodelaceae). American Journal of Botany, 2000, 87, 1578-1583.	0.8	95
41	Construction of a chromosome-enriched Hpall library from flow-sorted wheat chromosomes. Nucleic Acids Research, 1992, 20, 1897-1901.	6.5	89
42	Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome, 2006, 49, 1023-1035.	0.9	89
43	Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 2020, 6, 1325-1329.	4.7	87
44	Fall and rise of satellite repeats in allopolyploids of <i>Nicotiana</i> over <i>c</i> . 5 million years. New Phytologist, 2010, 186, 148-160.	3.5	86
45	Is There an Upper Limit to Genome Size?. Trends in Plant Science, 2017, 22, 567-573.	4.3	86
46	A taxonomic, genetic and ecological data resource for the vascular plants of Britain and Ireland. Scientific Data, 2022, 9, 1.	2.4	86
47	Key Features of Cereal Genome Organization as Revealed by the Use of Cytosine Methylation-Sensitive Restriction Endonucleases. Genomics, 1993, 15, 472-482.	1.3	84
48	Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends in Ecology and Evolution, 2009, 24, 572-582.	4.2	83
49	Rapid evolution of parental rDNA in a synthetic tobacco allotetraploid line. American Journal of Botany, 2003, 90, 988-996.	0.8	79
50	Making a functional diploid: from polysomic to disomic inheritance. New Phytologist, 2010, 186, 113-122.	3.5	78
51	Nextâ€generation sequencing and genome evolution in allopolyploids. American Journal of Botany, 2012, 99, 372-382.	0.8	77
52	Independent, Rapid and Targeted Loss of Highly Repetitive DNA in Natural and Synthetic Allopolyploids of Nicotiana tabacum. PLoS ONE, 2012, 7, e36963.	1.1	77
53	Higher Levels of Organization in the Interphase Nucleus of Cycling and Differentiated Cells. Microbiology and Molecular Biology Reviews, 2000, 64, 138-152.	2.9	75
54	Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Molecular Phylogenetics and Evolution, 2014, 80, 11-19.	1.2	75

#	Article	IF	CITATIONS
55	Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes, 2010, 1, 166-192.	1.0	73
56	Genome size diversity in angiosperms and its influence on gene space. Current Opinion in Genetics and Development, 2015, 35, 73-78.	1.5	73
57	Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma, 2009, 118, 85-97.	1.0	72
58	Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Molecular Genetics and Genomics, 2007, 278, 1-15.	1.0	70
59	Intragenic Recombination Events and Evidence for Hybrid Speciation in Nicotiana (Solanaceae). Molecular Biology and Evolution, 2010, 27, 781-799.	3.5	70
60	Comparative genomics and repetitive sequence divergence in the species of diploidNicotianasection Alatae. Plant Journal, 2006, 48, 907-919.	2.8	68
61	Dedifferentiation of Tobacco Cells Is Associated with Ribosomal RNA Gene Hypomethylation, Increased Transcription, and Chromatin Alterations. Plant Physiology, 2005, 139, 275-286.	2.3	66
62	Genome Size Dynamics and Evolution in Monocots. Journal of Botany, 2010, 2010, 1-18.	1.2	66
63	The origin and evolution of geminivirus-related DNA sequences in Nicotiana. Heredity, 2004, 92, 352-358.	1.2	65
64	Chromosomal diversification and karyotype evolution of diploids in the cytologically diverse genus Prospero(Hyacinthaceae). BMC Evolutionary Biology, 2013, 13, 136.	3.2	65
65	Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L. Heredity, 2005, 94, 501-506.	1.2	62
66	Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon(Asteraceae) allotetraploids. BMC Evolutionary Biology, 2010, 10, 291.	3.2	62
67	Variability in CpNpG methylation in higher plant genomes. Gene, 1997, 204, 25-33.	1.0	61
68	Genomic characterisation and the detection of raspberry chromatin in polyploid Rubus. Theoretical and Applied Genetics, 1998, 97, 1027-1033.	1.8	60
69	Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics, 2012, 13, 722.	1.2	60
70	Minisatellite telomeres occur in the family Alliaceae but are lost in <i>Allium</i> . American Journal of Botany, 2006, 93, 814-823.	0.8	58
71	Concerted Evolution of rDNA in Recently Formed Tragopogon Allotetraploids Is Typically Associated With an Inverse Correlation Between Gene Copy Number and Expression. Genetics, 2007, 176, 2509-2519.	1.2	58
72	Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytologist, 2007, 174, 658-668.	3.5	57

#	Article	IF	CITATIONS
73	Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma, 2016, 125, 683-699.	1.0	56
74	Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. Theoretical and Applied Genetics, 1995, 90, 636-642.	1.8	55
75	Aloe L a second plant family without (TTTAGGG) n telomeres. Chromosoma, 2000, 109, 201-205.	1.0	54
76	RECONSTRUCTING THE COMPLEX EVOLUTIONARY ORIGIN OF WILD ALLOPOLYPLOID TOBACCOS (<i>NICOTIANA</i> SECTION <i>SUAVEOLENTES</i>). Evolution; International Journal of Organic Evolution, 2013, 67, 80-94.	1.1	51
77	Characterisation of an unusual telomere motif (<scp>TTTTTTAGGG</scp>) _n in the plant <i>Cestrum elegans</i> (Solanaceae), a species with a large genome. Plant Journal, 2015, 82, 644-654.	2.8	51
78	The Welwitschia genome reveals aÂunique biology underpinning extreme longevity in deserts. Nature Communications, 2021, 12, 4247.	5.8	51
79	Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae). Plant Systematics and Evolution, 2017, 303, 1013-1020.	0.3	50
80	Parental Origin and Genome Evolution in the Allopolyploid Iris versicolor. Annals of Botany, 2007, 100, 219-224.	1.4	49
81	Comparative analysis of DNA methylation in tobacco heterochromatic sequences. Chromosome Research, 2000, 8, 527-541.	1.0	48
82	Genome downsizing after polyploidy: mechanisms, rates and selection pressures. Plant Journal, 2021, 107, 1003-1015.	2.8	48
83	Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway. Genome Biology and Evolution, 2015, 7, 2648-2662.	1.1	46
84	Chromosome arrangements in human fibroblasts at mitosis. Human Genetics, 1991, 88, 27-33.	1.8	45
85	Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity, 2003, 91, 268-275.	1.2	45
86	Distribution of the Tnt1 retrotransposon family in the amphidiploid tobacco (Nicotiana tabacum) and its wild Nicotiana relatives. Biological Journal of the Linnean Society, 2004, 82, 639-649.	0.7	44
87	Wild and agronomically important <i>Agave</i> species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Botanical Journal of the Linnean Society, 2008, 158, 215-222.	0.8	44
88	Using genomic repeats for phylogenomics: a case study in wild tomatoes (<i>Solanum</i> section <i>Lycopersicon</i> : Solanaceae). Biological Journal of the Linnean Society, 2016, 117, 96-105.	0.7	44
89	Exploring environmental selection on genome size in angiosperms. Trends in Plant Science, 2021, 26, 1039-1049.	4.3	44
90	Asparagales Telomerases which Synthesize the Human Type of Telomeres. Plant Molecular Biology, 2006, 60, 633-646.	2.0	43

#	Article	IF	CITATIONS
91	A genetic appraisal of a new synthetic <i>Nicotiana tabacum</i> (Solanaceae) and the Kostoff synthetic tobacco. American Journal of Botany, 2006, 93, 875-883.	0.8	43
92	Flow cytometric analysis of the chromosomes and stability of a wheat cell-culture line. Theoretical and Applied Genetics, 1997, 94, 91-97.	1.8	42
93	The signature of the Cestrum genome suggests an evolutionary response to the loss of (TTTAGGG) n telomeres. Chromosoma, 2003, 112, 164-172.	1.0	42
94	The effect of polyploidy and hybridization on the evolution of floral colour in <i>Nicotiana</i> (Solanaceae). Annals of Botany, 2015, 115, 1117-1131.	1.4	41
95	The asymmetric meiosis in pentaploid dogroses (Rosa sect. Caninae) is associated with a skewed distribution of rRNA gene families in the gametes. Heredity, 2008, 101, 359-367.	1.2	39
96	Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Annals of Botany, 2010, 105, 527-533.	1.4	38
97	Molecular analysis of holocentric centromeres of <i>Luzula</i> species. Cytogenetic and Genome Research, 2005, 109, 134-143.	0.6	36
98	Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae). Heredity, 2015, 114, 356-365.	1.2	35
99	Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids. Nature Plants, 2016, 2, 16119.	4.7	35
100	The spatial localization of homologous chromosomes in human fibroblasts at mitosis. Human Genetics, 1994, 93, 275-280.	1.8	34
101	Molecular cytogenetics and tandem repeat sequence evolution in the allopolyploid <i>Nicotiana rustica</i> compared with diploid progenitors <i>N. paniculata</i> and <i>N. undulata</i> . Cytogenetic and Genome Research, 2005, 109, 298-309.	0.6	34
102	Chromosome and genome size variation in <i>Luzula</i> (Juncaceae), a genus with holocentric chromosomes. Botanical Journal of the Linnean Society, 2012, 170, 529-541.	0.8	33
103	Endogenous pararetrovirus sequences associated with 24Ânt small <scp>RNA</scp> s at the centromeres of <i>Fritillaria imperialis </i> <scp>L</scp> . (<scp>L</scp> iliaceae), a species with a giant genome. Plant Journal, 2014, 80, 823-833.	2.8	32
104	Molecular cytogenetic analysis of repeated sequences in a long term wheat suspension culture. Plant Cell, Tissue and Organ Culture, 1993, 33, 287-296.	1.2	30
105	The promise of genomics in the study of plant-pollinator interactions. Genome Biology, 2013, 14, 207.	3.8	29
106	Postoperative continuous positive airway pressure to prevent pneumonia, re-intubation, and death after major abdominal surgery (PRISM): a multicentre, open-label, randomised, phase 3 trial. Lancet Respiratory Medicine,the, 2021, 9, 1221-1230.	5.2	29
107	Differential Dynamics of Transposable Elements during Long-Term Diploidization of Nicotiana Section Repandae (Solanaceae) Allopolyploid Genomes. PLoS ONE, 2012, 7, e50352.	1.1	29
108	Calculate the QT interval in patients taking drugs for dementia. BMJ: British Medical Journal, 2007, 335, 557.	2.4	28

#	Article	IF	CITATIONS
109	Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Systematics and Evolution, 2017, 303, 1043-1060.	0.3	28
110	Why size really matters when sequencing plant genomes. Plant Ecology and Diversity, 2012, 5, 415-425.	1.0	27
111	Multiple Origins and Nested Cycles of Hybridization Result in High Tetraploid Diversity in the Monocot Prospero. Frontiers in Plant Science, 2018, 9, 433.	1.7	27
112	Parental transposable element loads influence their dynamics in young <i>Nicotiana</i> hybrids and allotetraploids. New Phytologist, 2019, 221, 1619-1633.	3.5	23
113	Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Annals of Botany, 2019, 123, 767-781.	1.4	23
114	The volumes and morphology of human chromosomes in mitotic reconstructions. Human Genetics, 1989, 84, 27-34.	1.8	22
115	An evolutionary change in telomere sequence motif within the plant section Asparagales had significance for telomere nucleoprotein complexes. Cytogenetic and Genome Research, 2004, 107, 132-138.	0.6	21
116	Chromosome studies in Orchidaceae: karyotype divergence in Neotropical genera in subtribe Maxillariinae. Botanical Journal of the Linnean Society, 2012, 170, 29-39.	0.8	20
117	The distribution of a spliceosome protein in cereal (Triticeae) interphase nuclei from cells with different metabolic activities and through the cell cycle. Plant Journal, 1995, 8, 531-540.	2.8	19
118	Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biological Invasions, 2016, 18, 2137-2151.	1.2	19
119	Extensive plastid-nuclear discordance in a recent radiation of Nicotiana section Suaveolentes (Solanaceae). Botanical Journal of the Linnean Society, 2020, 193, 546-559.	0.8	19
120	Evolutionary and functional potential of ploidy increase within individual plants: somatic ploidy mapping of the complex labellum of sexually deceptive bee orchids. Annals of Botany, 2018, 122, 133-150.	1.4	17
121	Origin and parental genome characterization of the allotetraploid <i>Stylosanthes scabra</i> Vogel (Papilionoideae, Leguminosae), an important legume pasture crop. Annals of Botany, 2018, 122, 1143-1159.	1.4	17
122	Single Integration and Spread of a <i>Copia</i> -Like Sequence Nested in rDNA Intergenic Spacers of <i>Allium cernuum </i> (Alliaceae). Cytogenetic and Genome Research, 2010, 129, 35-46.	0.6	16
123	Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182619.	1.2	16
124	Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, <i>Nicotiana</i> section <i>Suaveolentes</i> (Solanaceae). Annals of Botany, 2023, 131, 123-142.	1.4	16
125	Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae). Chromosome Research, 2009, 17, 331-346.	1.0	15
126	A plant culture (BY-2) widely used in molecular and cell studies is genetically unstable and highly heterogeneous. Botanical Journal of the Linnean Society, 2012, 170, 459-471.	0.8	15

#	Article	IF	CITATIONS
127	Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization. BMC Genomics, 2018, 19, 578.	1.2	15
128	Nuclear differentiation in the filamentous caulonema of the moss Funaria hygrometrica. New Phytologist, 1995, 131, 543-556.	3.5	14
129	The use of fluorochromes in the cytogenetics of the small-grained cereals (Triticeae). The Histochemical Journal, 1994, 26, 471-479.	0.6	12
130	Analysis of two abundant, highly related satellites in the allotetraploid Nicotiana arentsii using double-strand conformation polymorphism analysis and sequencing. New Phytologist, 2011, 192, 747-759.	3.5	12
131	Impact of genomic diversity in river ecosystems. Trends in Plant Science, 2014, 19, 361-366.	4.3	12
132	Techniques in plant telomere biology. BioTechniques, 2005, 38, 233-243.	0.8	11
133	Ribosomal RNA genes evolution in <i>Tragopogon</i> : A story of New and Old World allotetraploids and the synthetic lines. Taxon, 2011, 60, 348-354.	0.4	11
134	The correlation of phylogenetics, elevation and ploidy on the incidence of apomixis in Asteraceae in the European Alps. Botanical Journal of the Linnean Society, 2020, 194, 410-422.	0.8	11
135	NUCLEAR CYTOPLASMIC INTERACTION HYPOTHESIS AND THE ROLE OF TRANSLOCATIONS IN NICOTIANA ALLOPOLYPLOIDS. , 2006, , 319-326.		9
136	Early consequences of allopolyploidy alter floral evolution in Nicotiana (Solanaceae). BMC Plant Biology, 2019, 19, 162.	1.6	9
137	Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. Plant Science, 2021, 302, 110671.	1.7	9
138	Microsatellites and petal morphology reveal new patterns of admixture in Orchis hybrid zones. American Journal of Botany, 2021, 108, 1388-1404.	0.8	9
139	The influence of 5-azacytidine on the condensation of the short arm of rye chromosome 1R in Triticum aestivum L. root tip meristematic nuclei. Chromosoma, 1997, 106, 485-492.	1.0	7
140	Fluorescent in situ hybridization and characterization of the <i>Sal</i> I family of satellite repeats in the <i>Haliotis</i> L. species (abalone) of the Northeast Pacific. Genome, 2008, 51, 570-579.	0.9	7
141	Potential of Herbariomics for Studying Repetitive DNA in Angiosperms. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	7
142	The role of DNA methylation on nuclear and cell differentiation in the filamentous caulonema of the moss Funaria hygrometrica. New Phytologist, 1998, 138, 567-577.	3.5	6
143	Evolutionary Implications of Genome and Karyotype Restructuring in Nicotiana tabacum L. , 2012, , 209-224.		6
144	250 years of hybridization between two biennial herb species without speciation. AoB PLANTS, 2015, 7, plv081.	1.2	6

#	Article	IF	CITATIONS
145	Repetitive DNA Restructuring Across Multiple Nicotiana Allopolyploidisation Events Shows a Lack of Strong Cytoplasmic Bias in Influencing Repeat Turnover. Genes, 2020, 11, 216.	1.0	6
146	Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps. Plants, 2022, 11, 1235.	1.6	6
147	Patterns of telomere length with age in African mole-rats: New insights from quantitative fluorescence in situ hybridisation (qFISH). PeerJ, 2020, 8, e10498.	0.9	5
148	Conserved gene order belies rapid genome turnover: The dynamic interplay between genomic DNA and the outside world. Heredity, 2007, 98, 61-62.	1.2	4
149	The influence of 5-azacytidine on the condensation of the short arm of rye chromosome 1R in. Chromosoma, 1997, 106, 485.	1.0	4
150	Repetitive DNA Dynamics and Polyploidization in the Genus Nicotiana (Solanaceae). Compendium of Plant Genomes, 2020, , 85-99.	0.3	4
151	Molecular cytogenetic studies in rubber, <i>Hevea brasiliensis</i> Muell. Arg. (Euphorbiaceae). Genome, 1998, 41, 464-467.	0.9	3
152	Chromosomal and molecular characterization of 5S rRNA genes in the North American abalones Haliotis rufescens Swainson (red abalone) and H. fulgens Philippi (blue abalone). Gene, 2019, 695, 65-74.	1.0	1
153	Plant Genome: Biodiversity and Evolution. Volume 1, Part A: Phanerogams. Edited by AÂKÂ Sharma and , AÂ Sharma. Enfield (New Hampshire): Science Publishers. \$125.00. xiv + 386 p + 1 foldout; ill.; authors index. ISBN: 1–57808–238–2. 2003 Quarterly Review of Biology, 2004, 79, 305-306.	0.0	0
154	Plant genomes. Genome dynamics vol. 4. Annals of Botany, 2009, 104, viii-viii.	1.4	0