Paolo Boccacci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1712427/publications.pdf

Version: 2024-02-01

45 papers

1,976 citations

236833 25 h-index 243529 44 g-index

45 all docs

45 docs citations

45 times ranked

1850 citing authors

#	Article	IF	CITATIONS
1	Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theoretical and Applied Genetics, 2004, 109, 1448-1458.	1.8	403
2	Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. Journal of Experimental Botany, 2011, 62, 1089-1101.	2.4	81
3	Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress. Scientific Reports, 2016, 6, 20167.	1.6	81
4	Characterization and evaluation of microsatellite loci in European hazelnut (Corylus avellana L.) and their transferability to other Corylus species. Molecular Ecology Notes, 2005, 5, 934-937.	1.7	76
5	DNA typing and genetic relations among European hazelnut (Corylus avellana L.) cultivars using microsatellite markers. Genome, 2006, 49, 598-611.	0.9	76
6	Development, characterization, segregation, and mapping of microsatellite markers for European hazelnut (Corylus avellana L.) from enriched genomic libraries and usefulness in genetic diversity studies. Tree Genetics and Genomes, 2010, 6, 513-531.	0.6	75
7	Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis. Journal of Experimental Botany, 2012, 63, 5919-5933.	2.4	73
8	Whole-genome sequencing and SNV genotyping of †Nebbiolo†(Vitis vinifera L.) clones. Scientific Reports, 2017, 7, 17294.	1.6	72
9	Grapevine Grafting: Scion Transcript Profiling and Defense-Related Metabolites Induced by Rootstocks. Frontiers in Plant Science, 2017, 8, 654.	1.7	72
10	Molecular and morphological diversity of on-farm hazelnut (Corylus avellana L.) landraces from southern Europe and their role in the origin and diffusion of cultivated germplasm. Tree Genetics and Genomes, 2013, 9, 1465-1480.	0.6	57
11	Development and evaluation of microsatellite markers in Phoenix dactylifera L. and their transferability to other Phoenix species. Biologia Plantarum, 2009, 53, 164-166.	1.9	52
12	Investigating the origin of hazelnut (Corylus avellana L.) cultivars using chloroplast microsatellites. Genetic Resources and Crop Evolution, 2009, 56, 851-859.	0.8	51
13	Castanea spp. biodiversity conservation: collection and characterization of the genetic diversity of an endangered species. Genetic Resources and Crop Evolution, 2012, 59, 1727-1741.	0.8	51
14	Nuclear and chloroplast microsatellite markers to assess genetic diversity and evolution in hazelnut species, hybrids and cultivars. Genetic Resources and Crop Evolution, 2013, 60, 543-568.	0.8	48
15	Hydrogen Peroxide Accumulation and Transcriptional Changes in Grapevines Recovered from Flavescence Dorée Disease. Phytopathology, 2013, 103, 776-784.	1.1	48
16	Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Research, 2010, 19, 17-27.	1.3	43
17	Microsatellite variability and genetic structure in hazelnut (Corylus avellana L.) cultivars from different growing regions. Scientia Horticulturae, 2010, 124, 128-133.	1.7	42
18	Genetic Diversity of Hazelnut (Corylus avellana L.) Germplasm in Northeastern Spain. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 667-672.	0.5	41

#	Article	IF	CITATIONS
19	Genetic and morphological characterization of chestnut (Castanea sativa Mill.) germplasm in Piedmont (north-western Italy). Tree Genetics and Genomes, 2013, 9, 1017-1030.	0.6	38
20	Genetic mapping and QTL analysis in European hazelnut (Corylus avellana L.). Molecular Breeding, 2016, 36, 1.	1.0	35
21	Evaluation of â€~Tonda di Giffoni' hazelnut (Corylus avellana L.) clones. Scientia Horticulturae, 2010, 124, 153-158.	1.7	34
22	Ozone Improves the Aromatic Fingerprint of White Grapes. Scientific Reports, 2017, 7, 16301.	1.6	33
23	In silico mining, characterization and cross-species transferability of EST-SSR markers for European hazelnut (Corylus avellana L.). Molecular Breeding, 2015, 35, 1.	1.0	29
24	Genetic traceability of Asti Spumante and Moscato d'Asti musts and wines using nuclear and chloroplast microsatellite markers. European Food Research and Technology, 2012, 235, 439-446.	1.6	28
25	Cultivar-specific gene modulation in Vitis vinifera: analysis of the promoters regulating the expression of WOX transcription factors. Scientific Reports, 2017, 7, 45670.	1.6	28
26	miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. Frontiers in Plant Science, 2018, 9, 1034.	1.7	26
27	Dissecting interplays between <i>Vitis vinifera</i> L. and grapevine virus B (GVB) under field conditions. Molecular Plant Pathology, 2018, 19, 2651-2666.	2.0	26
28	Grapevine–virus–environment interactions: an intriguing puzzle to solve. New Phytologist, 2017, 213, 983-987.	3.5	25
29	A multidisciplinary approach to enhance the conservation and use of hazelnut Corylus avellana L. genetic resources. Genetic Resources and Crop Evolution, 2015, 62, 649-663.	0.8	24
30	Characterization of T-DNA insertions in transgenic grapevines obtained by Agrobacterium-mediated transformation. Molecular Breeding, 2009, 24, 305-320.	1.0	23
31	Single-nucleotide polymorphism (SNP) genotyping assays for the varietal authentication of †Nebbiolo†musts and wines. Food Chemistry, 2020, 312, 126100.	4.2	22
32	DNA-based genealogy reconstruction of Nebbiolo, Barbera and other ancient grapevine cultivars from northwestern Italy. Scientific Reports, 2020, 10, 15782.	1.6	22
33	Investigation on clonal variants within the hazelnut (Corylus avellana L.) cultivar †Tonda Gentile delle Langhe'. Scientia Horticulturae, 2014, 165, 303-310.	1.7	18
34	The key role of "Moscato bianco―and "Malvasia aromatica di Parma―in the parentage of traditional aromatic grape varieties. Tree Genetics and Genomes, 2016, 12, 1.	0.6	18
35	Distinct Metabolic Signals Underlie Clone by Environment Interplay in "Nebbiolo―Grapes Over Ripening. Frontiers in Plant Science, 2019, 10, 1575.	1.7	15
36	â€~Cardinal' grape parentage: a case of a breeding mistake. Genome, 2007, 50, 325-328.	0.9	14

#	Article	IF	Citations
37	Stress responses and epigenomic instability mark the loss of somatic embryogenesis competence in grapevine. Plant Physiology, 2022, 188, 490-508.	2.3	12
38	Comparison of selection methods for the establishment of a core collection using SSR markers for hazelnut (Corylus avellana L.) accessions from European germplasm repositories. Tree Genetics and Genomes, 2021, 17, 1.	0.6	11
39	Biological and molecular interplay between two viruses and powdery and downy mildews in two grapevine cultivars. Horticulture Research, 2020, 7, 188.	2.9	10
40	GENETIC RELATIONSHIPS AMONG GRAPE CULTIVARS FROM NORTH-WESTERN ITALY. Acta Horticulturae, 2003, , 229-235.	0.1	9
41	Secondary Metabolism and Defense Responses Are Differently Regulated in Two Grapevine Cultivars during Ripening. International Journal of Molecular Sciences, 2021, 22, 3045.	1.8	9
42	Somatic embryogenesis is an effective strategy for dissecting chimerism phenomena in Vitis vinifera cv Nebbiolo. Plant Cell Reports, 2021, 40, 205-211.	2.8	8
43	Grapevine virome and production of healthy plants by somatic embryogenesis. Microbial Biotechnology, 2022, 15, 1357-1373.	2.0	7
44	Impact of oenological processing aids and additives on the genetic traceability of â€~Nebbiolo' wine produced with withered grapes. Food Research International, 2022, 151, 110874.	2.9	6
45	AN EFFICIENT DNA-EXTRACTION PROTOCOL FOR NUT SEEDS. Journal of Food Quality, 2008, 31, 549-557.	1.4	4