Robert A Field

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1712416/publications.pdf

Version: 2024-02-01

251 papers 9,822 citations

50 h-index 85 g-index

281 all docs

281 docs citations

times ranked

281

10857 citing authors

#	Article	IF	CITATIONS
1	Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 2017, 544, 65-70.	27.8	447
2	Structural Basis of Trimannoside Recognition by Concanavalin A. Journal of Biological Chemistry, 1996, 271, 972-976.	3.4	272
3	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
4	Recent applications of the Cul-catalysed Huisgen azide–alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. Organic and Biomolecular Chemistry, 2007, 5, 1006-1017.	2.8	239
5	The saponins – polar isoprenoids with important and diverse biological activities. Natural Product Reports, 2011, 28, 1261.	10.3	231
6	The SARS-COV-2 Spike Protein Binds Sialic Acids and Enables Rapid Detection in a Lateral Flow Point of Care Diagnostic Device. ACS Central Science, 2020, 6, 2046-2052.	11.3	222
7	Glyconanoparticles for the Colorimetric Detection of Cholera Toxin. Analytical Chemistry, 2007, 79, 1356-1361.	6.5	219
8	Silver and Gold Glyconanoparticles for Colorimetric Bioassays. Langmuir, 2006, 22, 6707-6711.	3.5	215
9	Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research. Journal of Biological Chemistry, 2012, 287, 39429-39438.	3.4	207
10	Application of copper(I)-catalysed azide/alkyne cycloaddition (CuAAC) â€~click chemistry' in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron, 2010, 66, 9475-9492.	1.9	194
11	Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nature Chemistry, 2014, 6, 65-74.	13.6	171
12	New Small-Molecule Synthetic Antimycobacterials. Antimicrobial Agents and Chemotherapy, 2005, 49, 2153-2163.	3.2	159
13	lodine: A versatile reagent in carbohydrate chemistry IV. Per-O-acetylation, regioselective acylation and acetolysis. Tetrahedron, 1997, 53, 11753-11766.	1.9	150
14	The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1455, 327-340.	3.8	128
15	â€~Click chemistry' synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorganic and Medicinal Chemistry, 2010, 18, 2412-2427.	3.0	126
16	A survey of chemical methods for sugar-nucleotide synthesis. Natural Product Reports, 2009, 26, 1172.	10.3	125
17	Streamlined Synthesis of Per-O-acetylated Sugars, Glycosyl Iodides, or Thioglycosides from Unprotected Reducing Sugars 1. Journal of Organic Chemistry, 2004, 69, 7758-7760.	3.2	123
18	Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydrate Research, 2016, 429, 1-22.	2.3	109

#	Article	IF	CITATIONS
19	RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Nature Structural Biology, 2000, 7, 398-402.	9.7	107
20	The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Molecular BioSystems, 2015, 11, 2808-2820.	2.9	104
21	New thiopyrazolo[3,4-d]pyrimidine derivatives as anti-mycobacterial agents. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1736-1740.	2.2	101
22	Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. Journal of Colloid and Interface Science, 2018, 512, 249-259.	9.4	99
23	Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus. Organic and Biomolecular Chemistry, 2013, 11, 7101.	2.8	98
24	Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst, The, 2008, 133, 626.	3.5	97
25	Bacterial detection using carbohydrate-functionalised CdS quantum dots: a model study exploiting E. coli recognition of mannosides. Tetrahedron Letters, 2009, 50, 886-889.	1.4	96
26	Probing the Breadth of Macrolide Glycosyltransferases:Â In Vitro Remodeling of a Polyketide Antibiotic Creates Active Bacterial Uptake and Enhances Potency. Journal of the American Chemical Society, 2005, 127, 9336-9337.	13.7	93
27	Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconjugate Journal, 2008, 25, 69-74.	2.7	93
28	Synthesis of α- and β-d-glucopyranosyl triazoles by CuAAC â€~click chemistry': reactant tolerance, reaction rate, product structure and glucosidase inhibitory properties. Carbohydrate Research, 2010, 345, 1123-1134.	2.3	90
29	Enzymatic synthesis using glycoside phosphorylases. Carbohydrate Research, 2015, 403, 23-37.	2.3	89
30	Purification and initial characterization of proline 4-hydroxylase from Streptomyces griseoviridus P8648: a 2-oxoacid, ferrous-dependent dioxygenase involved in etamycin biosynthesis. Biochemical Journal, 1996, 313, 185-191.	3.7	88
31	A Versatile Gold Surface Approach for Fabrication and Interrogation of Glycoarrays. ChemBioChem, 2008, 9, 1568-1575.	2.6	88
32	A Convenient Synthesis of Chiral Nonracemic Vinyl Aziridines. Organic Letters, 2004, 6, 2377-2380.	4.6	85
33	Chemoenzymatic Synthesis with Distinct Pasteurella Heparosan Synthases. Journal of Biological Chemistry, 2007, 282, 28321-28327.	3.4	77
34	Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. Evidence for the presence of phosphopantothenate in ACV synthetase Journal of Antibiotics, 1991, 44, 241-248.	2.0	71
35	lodine: A versatile reagent in carbohydrate chemistry III. Efficient activation of glycosyl halides in combination with DDQ. Tetrahedron Letters, 1996, 37, 8807-8810.	1.4	70
36	The Role of α-Glucosidase in Germinating Barley Grains Â. Plant Physiology, 2011, 155, 932-943.	4.8	70

#	Article	IF	CITATIONS
37	RmlC, a $C3\hat{a}\in^2$ and $C5\hat{a}\in^2$ Carbohydrate Epimerase, Appears to Operate via an Intermediate with an Unusual Twist Boat Conformation. Journal of Molecular Biology, 2007, 365, 146-159.	4.2	65
38	From Solution Phase to "On-Column―Chemistry: Trichloroacetimidate-Based Glycosylation Promoted by Perchloric Acidâ~'Silica. Journal of Organic Chemistry, 2005, 70, 9059-9062.	3.2	64
39	Man $\hat{A}1$ -2 Man \hat{A} -OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition. Glycobiology, 1999, 9, 539-545.	2.5	61
40	Direct synthesis of chiral aziridines from N-tert-butyl-sulfinylketimines. Chemical Communications, 2006, , 1833.	4.1	61
41	Flexible enzymatic and chemo-enzymatic approaches to a broad range of uridine-diphospho-sugars. Chemical Communications, 2004, , 2706.	4.1	60
42	Stable-Isotope-Assisted NMR Studies on 13C-Enriched Sialyl Lewisxin Solution and Bound to E-Selectin. Journal of the American Chemical Society, 1999, 121, 2546-2551.	13.7	59
43	Glycosylation reactions with  disarmed' thioglycoside donors promoted by N-iodosuccinimide and HClO4–silica. Tetrahedron Letters, 2005, 46, 5923-5925.	1.4	58
44	Cyclooligomerisation of azido-alkyne-functionalised sugars: synthesis of 1,6-linked cyclic pseudo-galactooligosaccharides and assessment of their sialylation by Trypanosoma cruzi trans-sialidase. Chemical Science, 2010, 1, 507.	7.4	57
45	Glycosylation chemistry promoted by iodine monobromide: Efficient synthesis of glycosyl bromides from thioglycosides, and O-glycosides from  disarmed' thioglycosides and glycosyl bromides. Tetrahedron Letters, 1997, 38, 8233-8236.	1.4	56
46	Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 $\hat{a}\in$ " a mini-review. Biologia (Poland), 2014, 69, 705-712.	1.5	55
47	Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans. Journal of Biological Chemistry, 2016, 291, 13318-13334.	3.4	55
48	New conformational constraints in isotopically (13C) enriched oligosaccharides. Glycobiology, 1998, 8, 147-153.	2.5	53
49	Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus Journal of Antibiotics, 1990, 43, 1055-1057.	2.0	52
50	"Click chemistryâ€en route to pseudo-starch. Organic and Biomolecular Chemistry, 2005, 3, 2225.	2.8	51
51	Observations on the activation of methyl thioglycosides by iodine and its interhalogen compounds. Tetrahedron: Asymmetry, 2000, 11, 581-593.	1.8	50
52	Iodine Promoted Glycosylation with Glycosyl Iodides: αâ€Glycoside Synthesis. Journal of Carbohydrate Chemistry, 2005, 24, 463-474.	1.1	50
53	Glycans as Modulators of Plant Defense Against Filamentous Pathogens. Frontiers in Plant Science, 2018, 9, 928.	3.6	50
54	lodine: A versatile reagent in carbohydrate chemistry II. Efficient chemospecific activation of thiomethylglycosides. Tetrahedron Letters, 1996, 37, 5175-5178.	1.4	49

#	Article	IF	CITATIONS
55	One-pot acetalation–acetylation of sugar derivatives employing perchloric acid immobilised on silica. Carbohydrate Research, 2005, 340, 1075-1080.	2.3	49
56	Structure of Streptomyces Maltosyltransferase GlgE, a Homologue of a Genetically Validated Anti-tuberculosis Target*. Journal of Biological Chemistry, 2011, 286, 38298-38310.	3.4	49
57	N-substituted analogues of S-nitroso- N -acetyl-D ,L -penicillamine: chemical stability and prolonged nitric oxide mediated vasodilatation in isolated rat femoral arteries. British Journal of Pharmacology, 1999, 126, 639-648.	5.4	48
58	A simple one-pot method for the synthesis of partially protected mono- and disaccharide building blocks using an orthoesterification–benzylation–orthoester rearrangement approach. Carbohydrate Research, 2003, 338, 2149-2152.	2.3	46
59	Xenopus as a model organism in developmental chemical genetic screens. Molecular BioSystems, 2005, 1, 223.	2.9	46
60	Biomolecular Characterization of the Levansucrase of Erwinia amylovora, a Promising Biocatalyst for the Synthesis of Fructooligosaccharides. Journal of Agricultural and Food Chemistry, 2013, 61, 12265-12273.	5.2	45
61	Thioctic acid amides: convenient tethers for achieving low nonspecific protein binding to carbohydrates presented on gold surfaces. Chemical Communications, 2005, , 3334.	4.1	44
62	A Chemical Genomic Approach Identifies Matrix Metalloproteinases as Playing an Essential and Specific Role in Xenopus Melanophore Migration. Chemistry and Biology, 2009, 16, 93-104.	6.0	44
63	Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspectives in Science, 2015, 6, 84-93.	0.6	44
64	Synthesis of triazole-linked pseudo-starch fragments. Carbohydrate Research, 2007, 342, 529-540.	2.3	43
65	Analysis of Two New Arabinosyltransferases Belonging to the Carbohydrate-Active Enzyme (CAZY) Glycosyl Transferase Family1 Provides Insights into Disease Resistance and Sugar Donor Specificity. Plant Cell, 2018, 30, 3038-3057.	6.6	43
66	Synthetic mannosides act as acceptors for mycobacterial $\hat{l}\pm 1$ -6 mannosyltransferase. Bioorganic and Medicinal Chemistry, 2001, 9, 815-824.	3.0	42
67	Surface plasmon resonance imaging of glycoarrays identifies novel and unnatural carbohydrate-based ligands for potential ricin sensor development. Chemical Science, 2011, 2, 1952.	7.4	42
68	Chemical and chemoenzymatic synthesis of glycosyl-amino acids and glycopeptides related to Trypanosoma cruzi mucins. Organic and Biomolecular Chemistry, 2007, 5, 2645.	2.8	41
69	Flux through Trehalose Synthase Flows from Trehalose to the Alpha Anomer of Maltose in Mycobacteria. Chemistry and Biology, 2013, 20, 487-493.	6.0	41
70	Glyconanoparticles for colorimetric bioassays. Analyst, The, 2015, 140, 59-70.	3.5	41
71	Synthesis of a 2,3,4-Triglycosylated Rhamnoside Fragment of Rhamnogalacturonan-II Side Chain A Using a Late Stage Oxidation Approach. Journal of Organic Chemistry, 2005, 70, 960-966.	3.2	40
72	Cell wall degradation is required for normal starch mobilisation in barley endosperm. Scientific Reports, 2016, 6, 33215.	3.3	40

#	Article	IF	CITATIONS
73	Sugar nucleotide recognition by Klebsiella pneumoniae UDP-d-galactopyranose mutase: Fluorinated substrates, kinetics and equilibria. Organic and Biomolecular Chemistry, 2009, 7, 1009.	2.8	39
74	Allosteric Competitive Inhibitors of the Glucose-1-phosphate Thymidylyltransferase (RmlA) from <i>Pseudomonas aeruginosa</i> . ACS Chemical Biology, 2013, 8, 387-396.	3.4	39
75	An \hat{l} ±-1,6-and \hat{l} ±-1,3-linked glucan produced by Leuconostoc citreum ABK-1 alternansucrase with nanoparticle and film-forming properties. Scientific Reports, 2018, 8, 8340.	3.3	39
76	Chemical genetics and cereal starch metabolism: structural basis of the non-covalent and covalent inhibition of barley \hat{l}^2 -amylase. Molecular BioSystems, 2011, 7, 718-730.	2.9	38
77	Chemoenzymatic synthesis of GM3, Lewis x and sialyl Lewis x oligosaccharides in 13C-enriched form. Tetrahedron Letters, 1997, 38, 5861-5864.	1.4	37
78	Expression and initial characterization of WbbI, a putatived-Galf:α-d-Glc β-1,6-galactofuranosyltransferase from Escherichia coli K-12. Organic and Biomolecular Chemistry, 2006, 4, 3945-3950.	2.8	36
79	Glycoclusters presenting lactose on calix[4]arene cores display trypanocidal activity. Tetrahedron, 2011, 67, 5902-5912.	1.9	36
80	Structural and Mechanistic Basis of Bacterial Sugar Nucleotide-Modifying Enzymesâ€. Biochemistry, 2003, 42, 7637-7647.	2.5	35
81	Contrasting reactivity of thioglucoside and selenoglucoside donors towards promoters: implications for glycosylation stereocontrol. Carbohydrate Research, 2006, 341, 1391-1397.	2.3	35
82	Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development. Molecular BioSystems, 2009, 5, 376.	2.9	35
83	Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins. Journal of Biological Chemistry, 2013, 288, 3696-3704.	3.4	35
84	A Bacterial Glucanotransferase Can Replace the Complex Maltose Metabolism Required for Starch to Sucrose Conversion in Leaves at Night. Journal of Biological Chemistry, 2013, 288, 28581-28598.	3.4	34
85	Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis. Carbohydrate Research, 2017, 451, 118-132.	2.3	33
86	Crystal structure of a novel two domain <scp>GH</scp> 78 family αâ€rhamnosidase from <scp><i>K</i></scp> <i>Iebsiella oxytoca</i> 8ioinformatics, 2015, 83, 1742-1749.	2.6	32
87	Probing the acceptor substrate binding site of Trypanosoma cruzi trans-sialidase with systematically modified substrates and glycoside libraries. Organic and Biomolecular Chemistry, 2011, 9, 1653.	2.8	31
88	Glycan Phosphorylases in Multi-Enzyme Synthetic Processes. Protein and Peptide Letters, 2017, 24, 696-709.	0.9	31
89	Identification of Euglena gracilis \hat{l}^2 -1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149. Journal of Biological Chemistry, 2018, 293, 2865-2876.	3.4	31
90	Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Scientific Reports, 2017, 7, 45341.	3.3	29

#	Article	IF	Citations
91	lodine and its interhalogen compounds: versatile reagents in carbohydrate chemistry. XIV. Glycosylated amino acid synthesis. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 770-772.	1.3	28
92	Iodine and its Interhalogen Compounds: Versatile Reagents in Carbohydrate Chemistry XIII. General Activation of `Armed' Glycosyl Donors. Synlett, 2001, 2001, 0260-0262.	1.8	28
93	The Position of a Key Tyrosine in dTDP-4-Keto-6-deoxy-D-glucose-5-epimerase (EvaD) Alters the Substrate Profile for This RmlC-like Enzyme. Journal of Biological Chemistry, 2004, 279, 32684-32691.	3.4	28
94	Biosynthesis of a Rare Di-N-Acetylated Sugar in the Lipopolysaccharides of both Pseudomonas aeruginosa and Bordetella pertussis Occurs via an Identical Scheme despite Different Gene Clusters. Journal of Bacteriology, 2008, 190, 6060-6069.	2.2	28
95	Sugar-coated sensor chip and nanoparticle surfaces for the in vitro enzymatic synthesis of starch-like materials. Chemical Science, 2014, 5, 341-350.	7.4	28
96	Chemical synthesis of 13C-labelled ganglioside Gb3 trisaccharide from [U-13C]-D-glucose. Tetrahedron, 1998, 54, 9489-9506.	1.9	26
97	lodine and Its Interhalogen Compounds: Versatile Reagents in Carbohydrate Chemistry V. Synthesis of 1,2-trans-Linked 1-Thioglycosides from the Per-O-acetylated Glycoses. Journal of Carbohydrate Chemistry, 1998, 17, 693-702.	1.1	26
98	Practical de-O-acylation reactions promoted by molecular sieves. Carbohydrate Research, 2004, 339, 729-732.	2.3	26
99	Proline 4-hydroxylase: Stereochemical course of the reaction. Tetrahedron Letters, 1993, 34, 7489-7492.	1.4	25
100	Substrate specificity of proline-4-hydroxylase: Chemical and enzymatic synthesis of 2S,3R,4S-epoxyproline. Tetrahedron Letters, 1994, 35, 4649-4652.	1.4	25
101	Synthesis and 1H NMR characterization of the six isomeric mono-O-sulfates of 8-methoxycarbonyloct-1-yl O-l̂²-d-galactopyranosyl-(1 → 4)-2-acetamido-2-deoxy-l̂²-d-glucopyranoside. Carbohydrate Research, 1995, 276, 347-363.	2.3	25
102	Indirect approach to C-3 branched 1,2-cis-glycofuranosides: synthesis of aceric acid glycoside analogues. Carbohydrate Research, 2008, 343, 211-220.	2.3	25
103	Exploring the Glycans of Euglena gracilis. Biology, 2017, 6, 45.	2.8	25
104	Thio-oligosaccharides of sialic acid – synthesis of an α(2→3) sialyl galactoside via a gulofuranose/galactopyranose approach. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1859-1866.	1.3	24
105	Hydrolase and sialyltransferase activities of Trypanosoma cruzi trans -sialidase towards NeuAc-α-2,3-Gal-β- O -PNP. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 141-144.	2.2	24
106	Practical synthesis of the 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- \hat{l}^2 -d-glucosides of Fmoc-serine and Fmoc-threonine and their benzyl esters. Carbohydrate Research, 2003, 338, 1039-1043.	2.3	24
107	Synthesis of the Branched-Chain Sugar Aceric Acid: A Unique Component of the Pectic Polysaccharide Rhamnogalacturonan-Ilâ€. Journal of Organic Chemistry, 2005, 70, 8556-8559.	3.2	24
108	Chemoenzymatic Synthesis of C6-Modified Sugar Nucleotides To Probe the GDP-d-Mannose Dehydrogenase from Pseudomonas aeruginosa. Organic Letters, 2019, 21, 4415-4419.	4.6	24

#	Article	IF	CITATIONS
109	Revisiting the Language of Glycoscience: Readers, Writers and Erasers in Carbohydrate Biochemistry. ChemBioChem, 2020, 21, 423-427.	2.6	24
110	Rationalising the effect of reducing agent on the oxazaborolidine-mediated asymmetric reduction of N-substituted imines. Tetrahedron Letters, 2004, 45, 853-855.	1.4	23
111	Synthesis of an apiose-containing disaccharide fragment of rhamnogalacturonan-II and some analogues. Carbohydrate Research, 2004, 339, 21-27.	2.3	23
112	Characterisation of Streptomyces spheroides NovW and revision of its functional assignment to a dTDP-6-deoxy-d-xylo-4-hexulose 3-epimerase. Chemical Communications, 2006, , 1079.	4.1	23
113	Click chemistry oligomerisation of azido-alkyne-functionalised galactose accesses triazole-linked linear oligomers and macrocycles that inhibit Trypanosoma cruzi macrophage invasion. Tetrahedron, 2015, 71, 7344-7353.	1.9	23
114	Synthesis and evaluation of mimetics of UDP and UDP-î±-d-galactose, dTDP and dTDP-î±-d-glucose with monosaccharides replacing the key pyrophosphate unit. Organic and Biomolecular Chemistry, 2005, 3, 1109-1115.	2.8	22
115	Characterization of WbpB, WbpE, and WbpD and Reconstitution of a Pathway for the Biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic Acid in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2009, 284, 11854-11862.	3.4	22
116	Rational re-design of <i>Lactobacillus reuteri</i> 121 inulosucrase for product chain length control. RSC Advances, 2019, 9, 14957-14965.	3.6	22
117	Identification and biochemical characterization of two novel UDP-2,3-diacetamido-2,3-dideoxy-α- <scp>D</scp> -glucuronic acid 2-epimerases from respiratory pathogens. Biochemical Journal, 2007, 405, 123-130.	3.7	21
118	Predicting Protein Function from Structureâ€"The Roles of Short-chain Dehydrogenase/Reductase Enzymes in Bordetella O-antigen Biosynthesis. Journal of Molecular Biology, 2007, 374, 749-763.	4.2	21
119	Expression and characterization of $4\cdot\hat{l}\pm$ -glucanotransferase genes from Manihot esculenta Crantz and Arabidopsis thaliana and their use for the production of cycloamyloses. Process Biochemistry, 2014, 49, 84-89.	3.7	21
120	Enzymatic synthesis of nucleobase-modified UDP-sugars: scope and limitations. Carbohydrate Research, 2015, 404, 17-25.	2.3	21
121	Characterisation of insoluble $\hat{l}\pm 1,3-\hat{l}\pm 1,6$ mixed linkage glucan produced in addition to soluble $\hat{l}\pm 1,6$ -linked dextran by glucansucrase (DEX-N) from Leuconostoc citreum ABK-1. International Journal of Biological Macromolecules, 2020, 152, 473-482.	7.5	21
122	Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models. PLoS ONE, 2015, 10, e0145397.	2.5	20
123	Structural characterisation of the capsular polysaccharide expressed by Burkholderia thailandensis strain E555:: wbil (pKnock-KmR) and assessment of the significance of the 2-O-acetyl group in immune protection. Carbohydrate Research, 2017, 452, 17-24.	2.3	20
124	Isolation and Characterization of a Double Stranded DNA Megavirus Infecting the Toxin-Producing Haptophyte Prymnesium parvum. Viruses, 2017, 9, 40.	3.3	20
125	Temperature-dependent inulin nanoparticles synthesized by Lactobacillus reuteri 121 inulosucrase and complex formation with flavonoids. Carbohydrate Polymers, 2019, 223, 115044.	10.2	20
126	Observations on chemical and enzymatic approaches to \hat{l} ±-2,3-sialylated octyl \hat{l} 2-lactoside. Tetrahedron, 2002, 58, 3207-3216.	1.9	19

#	Article	IF	CITATIONS
127	The Maltase Involved in Starch Metabolism in Barley Endosperm Is Encoded by a Single Gene. PLoS ONE, 2016, 11, e0151642.	2.5	19
128	The 1.6-Ã resolution crystal structure of NovW: A 4-keto-6-deoxy sugar epimerase from the novobiocin biosynthetic gene cluster of Streptomyces spheroides. Proteins: Structure, Function and Bioinformatics, 2006, 63, 261-265.	2.6	18
129	Direct oxidation of sugar nucleotides to the corresponding uronic acids: TEMPO and platinum-based procedures. Carbohydrate Research, 2007, 342, 460-466.	2.3	18
130	Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1). Journal of Biological Chemistry, 2015, 290, 29834-29853.	3.4	18
131	Chemoenzymatic Synthesis of Fluorinated Cellodextrins Identifies a New Allomorph for Celluloseâ€Like Materials**. Chemistry - A European Journal, 2021, 27, 1374-1382.	3.3	18
132	Recent advances in enzymatic synthesis of \hat{l}^2 -glucan and cellulose. Carbohydrate Research, 2021, 508, 108411.	2.3	18
133	Conserved Calcium-Binding Residues at the Ca-I Site Involved in Fructooligosaccharide Synthesis by <i>Lactobacillus reuteri</i> 121 Inulosucrase. ACS Omega, 2020, 5, 28001-28011.	3.5	18
134	Application of a Novel Microtitre Plate-Based Assay for the Discovery of New Inhibitors of DNA Gyrase and DNA Topoisomerase VI. PLoS ONE, 2013, 8, e58010.	2.5	18
135	Structure of a glycoconjugate in solution and in complex with an antibody Fv fragment. Glycobiology, 1997, 7, 373-381.	2.5	17
136	Convergent synthesis of a trisaccharide as its 2-(trimethylsilyl)ethyl glycoside related to the flavonoid triglycoside from Gymnema sylvestre. Carbohydrate Research, 2006, 341, 1697-1701.	2.3	17
137	Detection of Transglucosidase-Catalyzed Polysaccharide Synthesis on a Surface in Real Time Using Surface Plasmon Resonance Spectroscopy. Journal of the American Chemical Society, 2008, 130, 15234-15235.	13.7	17
138	Synthesis of a tetrasaccharide related to the repeating unit of the O-antigen from Escherichia coli K-12. Carbohydrate Research, 2009, 344, 2311-2316.	2.3	17
139	Synthesis of apiose-containing oligosaccharide fragments of the plant cell wall: fragments of rhamnogalacturonan-II side chains A and B, and apiogalacturonan. Organic and Biomolecular Chemistry, 2011, 9, 6670.	2.8	17
140	Underpinning Starch Biology with in vitro Studies on Carbohydrate-Active Enzymes and Biosynthetic Glycomaterials. Frontiers in Bioengineering and Biotechnology, 2015, 3, 136.	4.1	17
141	Profiling of Sugar Nucleotides. Methods in Enzymology, 2017, 597, 209-238.	1.0	17
142	The protosteryl and dammarenyl cation dichotomy in polycyclic triterpene biosynthesis revisited: has this â€~rule' finally been broken?. Natural Product Reports, 2019, 36, 1044-1052.	10.3	17
143	Characterization of a nanoparticulate exopolysaccharide from Leuconostoc holzapfelii KM01 and its potential application in drug encapsulation. International Journal of Biological Macromolecules, 2021, 187, 690-698.	7.5	17
144	Glycan-Based Flow-Through Device for the Detection of SARS-COV-2. ACS Sensors, 2021, 6, 3696-3705.	7.8	17

#	Article	IF	CITATIONS
145	An Examination of Some Derivatives of S-Nitroso-1-thiosugars as Vasodilators. Nitric Oxide - Biology and Chemistry, 1997, 1, 211-217.	2.7	16
146	â€TamiGold': phospha-oseltamivir-stabilised gold nanoparticles as the basis for influenza therapeutics and diagnostics targeting the neuraminidase (instead of the hemagglutinin). MedChemComm, 2012, 3, 1373.	3.4	16
147	Insights into toxic <i>Prymnesium parvum</i> blooms: the role of sugars and algal viruses. Biochemical Society Transactions, 2018, 46, 413-421.	3.4	16
148	Unraveling the subtleties of \hat{l}^2 -(1â†'3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families. Journal of Biological Chemistry, 2019, 294, 6483-6493.	3.4	16
149	Acceptor analogues as potential inhibitors of bovine \hat{l}^2 -1,4-galactosyl transferase. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 391-394.	2.2	15
150	Lectin and carbohydrate microarrays: New high-throughput methods for glycoprotein, carbohydrate-binding protein and carbohydrate-active enzyme analysis. Journal of Cereal Science, 2009, 50, 306-311.	3.7	15
151	Transâ€sialidase Stimulates <i>Eat Me</i> Response from Epithelial Cells. Traffic, 2013, 14, 853-869.	2.7	15
152	Fluorescent mannosides serve as acceptor substrates for glycosyltransferase and sugar-1-phosphate transferase activities in Euglena gracilis membranes. Carbohydrate Research, 2017, 438, 26-38.	2.3	15
153	Self-Assembled 2D Glycoclusters for the Targeted Delivery of Theranostic Agents to Triple-Negative Breast Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22181-22187.	8.0	15
154	Alogliptin alleviates liver fibrosis via suppression of activated hepatic stellate cell. Biochemical and Biophysical Research Communications, 2019, 511, 387-393.	2.1	15
155	Serine-rich repeat protein adhesins from i>Lactobacillus reuteri / i> display strain specific glycosylation profiles. Glycobiology, 2019, 29, 45-58.	2.5	15
156	Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy. Photochemical and Photobiological Sciences, 2022, 21, 1111-1131.	2.9	15
157	Assessing the Toxicity and Mitigating the Impact of Harmful <i>Prymnesium</i> Blooms in Eutrophic Waters of the Norfolk Broads. Environmental Science & Environmental Science	10.0	15
158	Stereospecific synthesis of 5-phospho-α-d-arabinosyl-C-phosphonophosphate (pACpp): a stable analogue of the putative mycobacterial cell wall biosynthetic intermediate 5-phospho-d-arabinosyl pyrophosphate (pApp). Tetrahedron Letters, 2001, 42, 2231-2234.	1.4	14
159	lodine-mediated glycosylation en route to mucin-related glyco-aminoacids and glycopeptides. Carbohydrate Research, 2008, 343, 1830-1834.	2.3	14
160	Chemical synthesis of UDP-Glc-2,3-diNAcA, a key intermediate in cell surface polysaccharide biosynthesis in the human respiratory pathogens B. pertussis and P. aeruginosa. Organic and Biomolecular Chemistry, 2009, 7, 1203.	2.8	14
161	Chemical and enzymatic synthesis of the alginate sugar nucleotide building block: GDP-d-mannuronic acid. Carbohydrate Research, 2019, 485, 107819.	2.3	14
162	Inhibition of the GDP- <scp>d</scp> -Mannose Dehydrogenase from <i>Pseudomonas aeruginosa</i> Using Targeted Sugar Nucleotide Probes. ACS Chemical Biology, 2020, 15, 3086-3092.	3.4	14

#	Article	IF	CITATIONS
163	Lipopolysaccharide associated with \hat{l}^2 -2,6 fructan mediates TLR4-dependent immunomodulatory activity in vitro. Carbohydrate Polymers, 2022, 277, 118606.	10.2	14
164	Tyl1a, a TDPâ€6â€deoxyâ€ <scp>D</scp> â€ <i>xylo</i> â€4â€hexulose 3,4â€isomerase from <i>Streptomyces frac Structure Prediction, Mutagenesis and Solvent Isotope Incorporation Experiments to Investigate Reaction Mechanism. ChemBioChem, 2008, 9, 1295-1302.</i>	liae: 2.6	13
165	An expression system for screening of proteins for glycan and protein interactions. Analytical Biochemistry, 2011, 411, 261-270.	2.4	13
166	An expedient enzymatic route to isomeric 2-, 3- and 6-monodeoxy-monofluoro-maltose derivatives. Carbohydrate Research, 2012, 358, 12-18.	2.3	13
167	Gene Discovery for Synthetic Biology. Methods in Enzymology, 2016, 576, 99-120.	1.0	13
168	Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1348-1357.	2.3	13
169	Unravelling the Specificity of Laminaribiose Phosphorylase from ⟨i⟩Paenibacillus⟨/i⟩ sp. YMâ€1 towards Donor Substrates Glucose/Mannose 1â€Phosphate by Using Xâ€ray Crystallography and Saturation Transfer Difference NMR Spectroscopy. ChemBioChem, 2019, 20, 181-192.	2.6	13
170	The structure of a GH149 βâ€(1 â†' 3) glucan phosphorylase reveals a new surface oligosaccharide bindi and additional domains that are absent in the disaccharideâ€specific GH94 glucoseâ€Î²â€(1 â†' 3)â€gluc (laminaribiose) phosphorylase. Proteins: Structure, Function and Bioinformatics, 2019, 87, 885-892.	ng site c 0 s 6	13
171	Comparison of the Levansucrase from the epiphyte Erwinia tasmaniensis vs its homologue from the phytopathogen Erwinia amylovora. International Journal of Biological Macromolecules, 2019, 127, 496-501.	7.5	13
172	Theoretical and experimental approaches to understand the biosynthesis of starch granules in a physiological context. Photosynthesis Research, 2020, 145, 55-70.	2.9	13
173	The Interaction of Anhydroalditols with Sweet-Almond \hat{l}^2 -glucosidase and Escherichia coli \hat{l}^2 -galactosidase: implications for the design of potent glycosidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 1991, 1, 667-672.	2.2	12
174	Enzymatic liberation of lycotetraose from the Solanum glycoalkaloid $\hat{l}\pm$ -tomatine. Carbohydrate Research, 2004, 339, 2325-2328.	2.3	12
175	Developing an asymmetric, stereodivergent route to selected 6-deoxy-6-fluoro-hexoses. Organic and Biomolecular Chemistry, 2009, 7, 996.	2.8	12
176	Challenging reaction equilibria. Nature Chemical Biology, 2011, 7, 658-659.	8.0	12
177	Identification of a Kdn biosynthesis pathway in the haptophyte Prymnesium parvum suggests widespread sialic acid biosynthesis among microalgae. Journal of Biological Chemistry, 2018, 293, 16277-16290.	3.4	12
178	Structural and functional analyses of glycoside hydrolase 138 enzymes targeting chain A galacturonic acid in the complex pectin rhamnogalacturonan II. Journal of Biological Chemistry, 2019, 294, 7711-7721.	3.4	12
179	Exchange of the valine 2-H in the biosynthesis of L- \hat{l} -(\hat{l} ±-aminoadipoyl)-L-Cysteinyl-D-valine. Tetrahedron, 1993, 49, 3221-3226.	1.9	11
180	Hydrophobic mannosides act as acceptors for trypanosome $\hat{l}\pm$ -mannosyltransferases. Glycobiology, 1997, 7, 549-558.	2.5	11

#	Article	IF	CITATIONS
181	Base-modified NAD and AMP derivatives and their activity against bacterial DNA ligases. Organic and Biomolecular Chemistry, 2015, 13, 6380-6398.	2.8	11
182	Discovery of an RmlC/D fusion protein in the microalga Prymnesium parvum and its implications for NDP-β-l-rhamnose biosynthesis in microalgae. Journal of Biological Chemistry, 2019, 294, 9172-9185.	3.4	11
183	Recent Developments in the Use of Glyconanoparticles and Related Quantum Dots for the Detection of Lectins, Viruses, Bacteria and Cancer Cells. Frontiers in Chemistry, 2021, 9, 668509.	3.6	11
184	Synthesis of l-arabinose-containing fragments of the oat root saponin Avenacin A-1. Carbohydrate Research, 2004, 339, 1285-1291.	2.3	10
185	Glycosylation with in situ separation: carbohydrate chemistry on a TLC plate. Organic and Biomolecular Chemistry, 2005, 3, 3468.	2.8	10
186	Detection of mSiglec-E, in solution and expressed on the surface of Chinese hamster ovary cells, using sialic acid functionalised gold nanoparticles. Analyst, The, 2016, 141, 5799-5809.	3.5	10
187	CuAAC click chemistry for the enhanced detection of novel alkyne-based natural product toxins. Chemical Communications, 2018, 54, 12234-12237.	4.1	10
188	Lateral Flow Glycoâ€Assays for the Rapid and Lowâ€Cost Detection of Lectins–Polymeric Linkers and Particle Engineering Are Essential for Selectivity and Performance. Advanced Healthcare Materials, 2022, 11, e2101784.	7.6	10
189	Exploiting an aromatic aglycone as a reporter of glycosylation stereochemistry in the synthesis of 1,6-linked maltooligosaccharides. Tetrahedron: Asymmetry, 2005, 16, 477-485.	1.8	9
190	Modified properties of alternan polymers arising from deletion of SH3-like motifs in Leuconostoc citreum ABK-1 alternansucrase. Carbohydrate Polymers, 2019, 220, 103-109.	10.2	9
191	Preparative and Kinetic Analysis of βâ€1,4―and βâ€1,3â€Glucan Phosphorylases Informs Access to Human Milk Oligosaccharide Fragments and Analogues Thereof. ChemBioChem, 2020, 21, 1043-1049.	2.6	9
192	Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga <i>Euglena gracilis</i> . Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
193	Efficient synthesis of methyl lycotetraoside, the tetrasaccharide constituent of the tomato defence glycoalkaloid α-tomatine. Organic and Biomolecular Chemistry, 2005, 3, 3201.	2.8	8
194	A one-pot enzymatic approach to the O-fluoroglucoside of N-methylanthranilate. Bioorganic and Medicinal Chemistry, 2013, 21, 4762-4767.	3.0	8
195	Analysis of Surface Binding Sites (SBS) within GH62, GH13, and GH77. Journal of Applied Glycoscience (1999), 2015, 62, 87-93.	0.7	8
196	CuAAC click chemistry with N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol provides access to triazole-linked piperidine and azepane pseudo-disaccharide iminosugars displaying glycosidase inhibitory properties. Carbohydrate Research, 2016, 429, 29-37.	2.3	8
197	Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism. Biochemical Society Transactions, 2016, 44, 159-165.	3.4	8
198	Preparation of Cross-Linked Enzyme Aggregates (CLEAs) of an Inulosucrase Mutant for the Enzymatic Synthesis of Inulin-Type Fructooligosaccharides. Catalysts, 2019, 9, 641.	3.5	8

#	Article	IF	Citations
199	Prospects for anti-Candida therapy through targeting the cell wall: A mini-review. Cell Surface, 2021, 7, 100063.	3.0	8
200	Studies on the exchange of valine-oxygen during the biosynthesis of δ-(L-α-Aminoadipoyl)-L-cysteinyl-D-valine Tetrahedron, 1992, 48, 1099-1108.	1.9	7
201	A synthetic acceptor substrate for Trypanosoma brucei UDP-Gal: GPI anchor side-chain α-galactosyltransferases. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2051-2054.	2.2	7
202	Adaptation of an NMR signal suppression pulse sequence for the selective removal of benzylic methylene signals of benzyl ether-protected carbohydrates. Tetrahedron Letters, 1999, 40, 2025-2028.	1.4	7
203	2,3,4,6-Tetra- <i>O</i> -acetyl-α- <scp>D</scp> -glucopyranosyl azide. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, o445-o446.	0.4	7
204	Synthesis of prospective disaccharide ligands for Escherichia coli O157 verotoxin. Tetrahedron Letters, 2009, 50, 3397-3399.	1.4	7
205	Membrane-enclosed multienzyme (MEME) synthesis of 2,7-anhydro-sialic acid derivatives. Carbohydrate Research, 2017, 451, 110-117.	2.3	7
206	Heterologous co-expression in E. coli of isoamylase genes from cassava Manihot esculenta Crantz â€~KU50' achieves enzyme-active heteromeric complex formation. Plant Molecular Biology, 2018, 96, 417-427.	3.9	7
207	Fluorescence imaging of a potential diagnostic biomarker for breast cancer cells using a peptide-functionalized fluorogenic 2D material. Chemical Communications, 2019, 55, 13235-13238.	4.1	7
208	Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria. International Journal of Molecular Sciences, 2022, 23, 2992.	4.1	7
209	Synthesis and Activation of Carbohydrate Donors: Thioglycosides and Sulfoxides. , 2003, , 121-145.		6
210	Oligosaccharide Signalling Molecules. , 2009, , 349-359.		6
211	Synthesis of fluorescently labelled rhamnosides: probes for the evaluation of rhamnogalacturonan II biosynthetic enzymes. Carbohydrate Research, 2011, 346, 1617-1621.	2.3	6
212	The impact of aminopyrene trisulfonate (APTS) label in acceptor glycan substrates for profiling plant pectin l²-galactosyltransferase activities. Carbohydrate Research, 2016, 433, 97-105.	2.3	6
213	Cluster glycosides and heteroglycoclusters presented in alternative arrangements. Tetrahedron Letters, 2018, 59, 4405-4409.	1.4	6
214	Molecular recognition of natural and nonâ€natural substrates by cellodextrin phosphorylase from Ruminiclostridium thermocellum investigated by NMR spectroscopy. Chemistry - A European Journal, 2021, 27, 15688-15698.	3.3	6
215	96 On the role of manganese cation in the mechanism of \hat{l}_{\pm} -1,3-fucosyltransferase. Biochemical Society Transactions, 1997, 25, S630-S630.	3.4	5
216	Synthesis of Mucin Glycans from the Protozoon Parasite <i>Trypanosoma cruzi</i> . Synlett, 2008, 2008, 2175-2177.	1.8	5

#	Article	IF	Citations
217	End-Functionalized Poly(vinylpyrrolidone) for Ligand Display in Lateral Flow Device Test Lines. ACS Polymers Au, 2022, 2, 69-79.	4.1	5
218	A comparison by magnetic circular dichroism of compound X and compound II of horseradish peroxidase. FEBS Letters, 1987, 214, 347-350.	2.8	4
219	Exchange of valine-oxygen during the biosynthesis of \hat{l} -(L- \hat{l} ±-aminoadipoyl)-L-cysteinyl-D-valine. Journal of the Chemical Society Chemical Communications, 1991, .	2.0	4
220	Plant Cell Wall Glycans: Chemical Synthesis of the Branched Sugar Aceric Acid. ACS Symposium Series, 2007, , 34-49.	0.5	4
221	Synthesis and anti-HIV activity of triterpene 3-O-galactopyranosides, analogs of glycyrrhizic acid. Chemistry of Natural Compounds, 2010, 46, 576-582.	0.8	4
222	Detection of enzyme-catalyzed polysaccharide synthesis on surfaces. Biocatalysis and Biotransformation, 2010, 28, 64-71.	2.0	4
223	Synthesis of glyceryl glycosides related to A-type prymnesin toxins. Carbohydrate Research, 2018, 463, 14-23.	2.3	4
224	Structural and functional analysis of Erwinia amylovora SrlD. The first crystal structure of a sorbitol-6-phosphate 2-dehydrogenase. Journal of Structural Biology, 2018, 203, 109-119.	2.8	4
225	A chemical genetic screen reveals that iminosugar inhibitors of plant glucosylceramide synthase inhibit root growth in Arabidopsis and cereals. Scientific Reports, 2018, 8, 16421.	3.3	4
226	Ascertaining the biochemical function of an essential pectin methylesterase in the gut microbe Bacteroides thetaiotaomicron. Journal of Biological Chemistry, 2020, 295, 18625-18637.	3.4	4
227	Postsynthesis Self- And Coassembly of Enzymatically Produced Fluorinated Cellodextrins and Cellulose Nanocrystals. Langmuir, 2021, 37, 9215-9221.	3.5	4
228	Overexpression, purification, crystallization and data collection on theBordetella pertussis wlbD gene product, a putative UDP-GlcNAc 2′-epimerase. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1310-1312.	2.5	3
229	A sugar aminoacid for the development of multivalent ligands for Escherichia coli 0157 verotoxin. Tetrahedron: Asymmetry, 2009, 20, 730-732.	1.8	3
230	Exploring anomeric glycosylation of phosphoric acid: Optimisation and scope for non-native substrates. Carbohydrate Research, 2020, 488, 107896.	2.3	3
231	Contemporary glycoconjugation chemistry. Carbohydrate Chemistry, 0, , 1-46.	0.3	3
232	Sweet targets: sugar nucleotide biosynthesis inhibitors. Future Medicinal Chemistry, 2022, 14, 295-298.	2.3	3
233	Levan-type fructooligosaccharides synthesis by novel levansucrase-inulosucrase fusion enzyme. Biochemical Engineering Journal, 2022, 185, 108524.	3.6	3
234	Phenotypic Screens with Model Organisms. , 2012, , 121-136.		2

#	Article	IF	CITATIONS
235	Biochemical and Structural Analysis of the Role of the Wlb Gene Locus in Bordetella Pertussis Lipopolysaccharide Biosynthesis. Scientific World Journal, The, 2002, 2, 55-56.	2.1	1
236	Synthetic Glycans, Glycoarrays, and Glyconanoparticles To Investigate Host Infection by <i>Trypanosoma cruzi < /i> . ACS Symposium Series, 2011, , 143-159.</i>	0.5	1
237	Cloning of the full-length isoamylase3 gene from cassava Manihot esculenta Crantz â∈̃KU50â∈™ and its heterologous expression in E. coli. Plant Physiology and Biochemistry, 2018, 132, 281-286.	5.8	1
238	High-Throughput In Vitro Screening for Inhibitors of Cereal \hat{l} ±-Glucosidase. Methods in Molecular Biology, 2018, 1795, 101-115.	0.9	1
239	Self-Assembled Thin-Layer Glycomaterials With a Proper Shell Thickness for Targeted and Activatable Cell Imaging. Frontiers in Chemistry, 2019, 7, 294.	3.6	1
240	lodine, a versatile reagent in carbohydrate chemistry. Advances in Sulfur Chemistry, 2000, , 37-56.	0.0	1
241	Anomeric 1,2,3-triazole-linked sialic acid derivatives show selective inhibition towards a bacterial neuraminidase over a trypanosome <i>trans</i> -sialidase. Beilstein Journal of Organic Chemistry, 2022, 18, 208-216.	2.2	1
242	Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga <i>Euglena gracilis</i> . Angewandte Chemie, 2022, 134, .	2.0	1
243	Spinning sugars in antigen biosynthesis: characterization of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases. Journal of Biological Chemistry, 2022, , 101903.	3.4	1
244	Amino alditols as inhibitors of mycobacterial cell wall biosynthesis. Biochemical Society Transactions, 2002, 30, A27-A27.	3.4	0
245	A Convenient Synthesis of Chiral Nonracemic Vinyl Aziridines ChemInform, 2004, 35, no.	0.0	0
246	Peracetylated α-D-glucopyranosyl fluoride and peracetylated α-maltosyl fluoride. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, o124-o127.	0.4	0
247	Blocking bacterial defences. Nature Chemistry, 2013, 5, 642-643.	13.6	0
248	Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins Journal of Biological Chemistry, 2013, 288, 19644.	3.4	0
249	New Investigators in Glycoscience 2. Carbohydrate Research, 2017, 445, 117-122.	2.3	0
250	New investigators in glycoscience. Carbohydrate Research, 2017, 438, 65-66.	2.3	0
251	Small molecule inhibitors to dissect starch degradation during cereal germination. CFW Plexus, 2012,	0.0	0