
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1711847/publications.pdf Version: 2024-02-01

Ιοδέο Ριντο

#	Article	IF	CITATIONS
1	Ethical Considerations for Gene Drive: Challenges of Balancing Inclusion, Power and Perspectives. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826727.	2.0	9
2	Potentialities of Agro-Based Wastes to Remove Cd, Hg, Pb, and As from Contaminated Waters. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	9
3	Mitogenome Analyses Reveal Limited Introduction of Anopheles coluzzii Into the Central African Islands of São Tomé and PrÃncipe. Frontiers in Tropical Diseases, 2022, 3, .	0.5	2
4	Influence of UV degradation of bioplastics on the amplification of mercury bioavailability in aquatic environments. Marine Pollution Bulletin, 2022, 180, 113806.	2.3	2
5	Competition among rare earth elements on sorption onto six seaweeds. Journal of Rare Earths, 2021, 39, 734-741.	2.5	16
6	A Novel Allele Specific Polymerase Chain Reaction (AS-PCR) Assay to Detect the V1016G Knockdown Resistance Mutation Confirms Its Widespread Presence in Aedes albopictus Populations from Italy. Insects, 2021, 12, 79.	1.0	8
7	Nutshells as Efficient Biosorbents to Remove Cadmium, Lead, and Mercury from Contaminated Solutions. International Journal of Environmental Research and Public Health, 2021, 18, 1580.	1.2	18
8	Novel genotyping approaches to easily detect genomic admixture between the major Afrotropical malaria vector species, <i>Anopheles coluzzii</i> and <i>An. gambiae</i> . Molecular Ecology Resources, 2021, 21, 1504-1516.	2.2	7
9	Platinum-group elements sorption by living macroalgae under different contamination scenarios. Journal of Environmental Chemical Engineering, 2021, 9, 105100.	3.3	14
10	The origin of island populations of the African malaria mosquito, Anopheles coluzzii. Communications Biology, 2021, 4, 630.	2.0	7
11	Optimization of Nd(III) removal from water by Ulva sp. and Gracilaria sp. through Response Surface Methodology. Journal of Environmental Chemical Engineering, 2021, 9, 105946.	3.3	12
12	Response surface approach to optimize the removal of the critical raw material dysprosium from water through living seaweeds. Journal of Environmental Management, 2021, 300, 113697.	3.8	9
13	Insect-specific flaviviruses and densoviruses, suggested to have been transmitted vertically, found in mosquitoes collected in Angola: Genome detection and phylogenetic characterization of viral sequences. Infection, Genetics and Evolution, 2020, 80, 104191.	1.0	5
14	Assessment of marine macroalgae potential for gadolinium removal from contaminated aquatic systems. Science of the Total Environment, 2020, 749, 141488.	3.9	25
15	Complete mitogenome sequence of <i>Anopheles coustani</i> from São Tomé island. Mitochondrial DNA Part B: Resources, 2020, 5, 3376-3378.	0.2	1
16	The V410L knockdown resistance mutation occurs in island and continental populations of Aedes aegypti in West and Central Africa. PLoS Neglected Tropical Diseases, 2020, 14, e0008216.	1.3	26
17	Influence of toxic elements on the simultaneous uptake of rare earth elements from contaminated waters by estuarine macroalgae. Chemosphere, 2020, 252, 126562.	4.2	26
18	A green method based on living macroalgae for the removal of rare-earth elements from contaminated waters. Journal of Environmental Management, 2020, 263, 110376.	3.8	39

#	Article	IF	CITATIONS
19	Application of the Relationship-Based Model to Engagement for Field Trials of Genetically Engineered Malaria Vectors. American Journal of Tropical Medicine and Hygiene, 2020, , .	0.6	13
20	The influence of temperature and salinity on the impacts of lead in Mytilus galloprovincialis. Chemosphere, 2019, 235, 403-412.	4.2	37
21	Phylogeography and invasion history of Aedes aegypti , the Dengue and Zika mosquito vector in Cape Verde islands (West Africa). Evolutionary Applications, 2019, 12, 1797-1811.	1.5	19
22	Origin and expansion of the mosquito Aedes aegypti in Madeira Island (Portugal). Scientific Reports, 2019, 9, 2241.	1.6	24
23	Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts. Aquatic Toxicology, 2019, 211, 181-192.	1.9	89
24	Toxicological assessment of anthropogenic Gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis. Science of the Total Environment, 2019, 664, 626-634.	3.9	67
25	Alternative strategies for mosquito-borne arbovirus control. PLoS Neglected Tropical Diseases, 2019, 13, e0006822.	1.3	165
26	Liaisons dangereuses: cross-border gene flow and dispersal of insecticide resistance-associated genes in the mosquito Aedes aegypti from Brazil and French Guiana. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e190120.	0.8	12
27	A novel nested polymerase chain reaction assay targeting <i>Plasmodium</i> mitochondrial DNA in fieldâ€collected <i>Anopheles</i> mosquitoes. Medical and Veterinary Entomology, 2018, 32, 372-377.	0.7	7
28	First evidence of resistance to pyrethroid insecticides in Italian <scp><i>Aedes albopictus</i></scp> populations 26 years after invasion. Pest Management Science, 2018, 74, 1319-1327.	1.7	36
29	Population structure of a vector of human diseases: <i>Aedes aegypti</i> in its ancestral range, Africa. Ecology and Evolution, 2018, 8, 7835-7848.	0.8	57
30	Effectiveness of a new long-lasting insecticidal nets delivery model in two rural districts of Mozambique: a before–after study. Malaria Journal, 2018, 17, 66.	0.8	5
31	Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats. International Journal of Environmental Research and Public Health, 2018, 15, 220.	1.2	153
32	The mosquito fauna of the western region of Spain with emphasis on ecological factors and the characterization of <i>Culex pipiens</i> forms. Journal of Vector Ecology, 2017, 42, 136-147.	0.5	29
33	International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasites and Vectors, 2017, 10, 278.	1.0	23
34	Massive introgression drives species radiation at the range limit of Anopheles gambiae. Scientific Reports, 2017, 7, 46451.	1.6	28
35	Genetic diversity of the African malaria vector Anopheles gambiae. Nature, 2017, 552, 96-100.	13.7	288
36	Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical Diseases, 2017, 11, e0005625.	1.3	504

#	Article	IF	CITATIONS
37	Implementation strategies to increase access and demand of long-lasting insecticidal nets: a before-and-after study and scale-up process in Mozambique. Malaria Journal, 2017, 16, 429.	0.8	9
38	Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal). PLoS Neglected Tropical Diseases, 2017, 11, e0005799.	1.3	51
39	Molecular evolution and population genetics of a Gram-negative binding protein gene in the malaria vector Anopheles gambiae (sensu lato). Parasites and Vectors, 2016, 9, 515.	1.0	4
40	Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN). PLoS Neglected Tropical Diseases, 2016, 10, e0005054.	1.3	43
41	Population diversity of Theileria annulata in Portugal. Infection, Genetics and Evolution, 2016, 42, 14-19.	1.0	23
42	The last bastion? X chromosome genotyping of <i>Anopheles gambiae</i> species pair males from a hybrid zone reveals complex recombination within the major candidate †genomic island of speciation'. Molecular Ecology, 2016, 25, 5719-5731.	2.0	15
43	Genetic diversity and population structure of Plasmodium falciparum over space and time in an African archipelago. Infection, Genetics and Evolution, 2016, 43, 252-260.	1.0	6
44	Culex pipiens as a potential vector for transmission of Dirofilaria immitis and other unclassified Filarioidea in Southwest Spain. Veterinary Parasitology, 2016, 223, 173-180.	0.7	33
45	Limited genomic divergence between intraspecific forms of Culex pipiens under different ecological pressures. BMC Evolutionary Biology, 2015, 15, 197.	3.2	12
46	Analysis of the sporozoite <scp>ELISA</scp> for estimating infection rates in <scp>M</scp> ozambican anophelines. Medical and Veterinary Entomology, 2015, 29, 10-16.	0.7	5
47	Remarkable diversity of intron-1 of the para voltage-gated sodium channel gene in an Anopheles gambiae/Anopheles coluzzii hybrid zone. Malaria Journal, 2015, 14, 9.	0.8	7
48	Adaptive Potential of Hybridization among Malaria Vectors: Introgression at the Immune Locus TEP1 between Anopheles coluzzii and A. gambiae in †Far-West' Africa. PLoS ONE, 2015, 10, e0127804.	1.1	16
49	First report of an exophilic Anopheles arabiensis population in Bissau City, Guinea-Bissau: recent introduction or sampling bias?. Malaria Journal, 2014, 13, 423.	0.8	16
50	Prominent intraspecific genetic divergence within <i>Anopheles gambiae</i> sibling species triggered by habitat discontinuities across a riverine landscape. Molecular Ecology, 2014, 23, 4574-4589.	2.0	20
51	Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades. Parasites and Vectors, 2014, 7, 31.	1.0	10
52	Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi. Malaria Journal, 2014, 13, 203.	0.8	26
53	Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization. Parasites and Vectors, 2013, 6, 93.	1.0	73
54	Distribution and hybridization of Culex pipiens forms in Greece during the West Nile virus outbreak of 2010. Infection, Genetics and Evolution, 2013, 16, 218-225.	1.0	45

#	Article	IF	CITATIONS
55	Genetic isolation within the malaria mosquito <i>Anopheles melas</i> . Molecular Ecology, 2013, 22, 3878-3878.	2.0	0
56	Geographic population structure of the <scp>A</scp> frican malaria vector <i><scp>A</scp>nopheles gambiae</i> suggests a role for the forestâ€savannah biome transition as a barrier to gene flow. Evolutionary Applications, 2013, 6, 910-924.	1.5	29
57	Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue vector. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 3-10.	0.8	34
58	New Insights into the Population Structure of Anopheles gambiae s.s. in the Gulf of Guinea Islands Revealed by Herves Transposable Elements. PLoS ONE, 2013, 8, e62964.	1.1	8
59	Gene Flow-Dependent Genomic Divergence between Anopheles gambiae M and S Forms. Molecular Biology and Evolution, 2012, 29, 279-291.	3.5	79
60	Genetic isolation within the malaria mosquito <i><scp>A</scp>nopheles melas</i> . Molecular Ecology, 2012, 21, 4498-4513.	2.0	17
61	Seasonal population dynamics and the genetic structure of the mosquito vector <i>Aedes aegypti</i> in São Paulo, Brazil. Ecology and Evolution, 2012, 2, 2794-2802.	0.8	20
62	The Culex pipiens Complex in Continental Portugal: Distribution and Genetic Structure. Journal of the American Mosquito Control Association, 2012, 28, 75-80.	0.2	7
63	Hybridization and population structure of the <i><scp>C</scp>ulex pipiens</i> complex in the islands of <scp>M</scp> acaronesia. Ecology and Evolution, 2012, 2, 1889-1902.	0.8	13
64	Pyruvate Kinase Deficiency in Sub-Saharan Africa: Identification of a Highly Frequent Missense Mutation (G829A;Glu277Lys) and Association with Malaria. PLoS ONE, 2012, 7, e47071.	1.1	24
65	Comparative analyses reveal discrepancies among results of commonly used methods for Anopheles gambiae molecular form identification. Malaria Journal, 2011, 10, 215.	0.8	23
66	Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe. Malaria Journal, 2011, 10, 5.	0.8	32
67	Studies on the behaviour of peridomestic and endophagic M form Anopheles gambiae from a rice growing area of Ghana. Bulletin of Entomological Research, 2011, 101, 533-539.	0.5	10
68	The "Far-West―of Anopheles gambiae Molecular Forms. PLoS ONE, 2011, 6, e16415.	1.1	62
69	Molecular evolution of the three short PGRPs of the malaria vectors Anopheles gambiae and Anopheles arabiensisin East Africa. BMC Evolutionary Biology, 2010, 10, 9.	3.2	12
70	Mosquito fauna on the Cape Verde Islands (West Africa): an update on species distribution and a new finding. Journal of Vector Ecology, 2010, 35, 307-312.	0.5	21
71	Tracing the origins and signatures of selection of antifolate resistance in island populations of Plasmodium falciparum. BMC Infectious Diseases, 2010, 10, 163.	1.3	16
72	Geographic Structuring of the Plasmodium falciparum Sarco(endo)plasmic Reticulum Ca2+ ATPase (PfSERCA) Gene Diversity. PLoS ONE, 2010, 5, e9424.	1.1	35

#	Article	IF	CITATIONS
73	Field, Genetic, and Modeling Approaches Show Strong Positive Selection Acting upon an Insecticide Resistance Mutation in Anopheles gambiae s.s Molecular Biology and Evolution, 2010, 27, 1117-1125.	3.5	88
74	Two Nonrecombining Sympatric Forms of the Human Malaria Parasite <i>Plasmodium ovale</i> Occur Globally. Journal of Infectious Diseases, 2010, 201, 1544-1550.	1.9	310
75	Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera:) Tj ETQq1 1	0.784314 3.2	rgBT /Overic
76	Polymorphism of intronâ€1 in the voltageâ€gated sodium channel gene of <i>Anopheles gambiae</i> s.s. populations from Cameroon with emphasis on insecticide knockdown resistance mutations. Molecular Ecology, 2009, 18, 3076-3086.	2.0	33
77	Evidence for a discrete evolutionary lineage within Equatorial Guinea suggests that the tsetse fly <i>Glossina palpalis palpalis</i> exists as a species complex. Molecular Ecology, 2009, 18, 3268-3282.	2.0	31
78	Potential mosquito vectors of arboviruses in Portugal: species, distribution, abundance and West Nile infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, 823-832.	0.7	44
79	Knockdown resistance mutations (<i>kdr</i>) and insecticide susceptibility to DDT and pyrethroids in <i>Anopheles gambiae</i> from Equatorial Guinea. Tropical Medicine and International Health, 2008, 13, 430-433.	1.0	25
80	Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malaria Journal, 2008, 7, 74.	0.8	176
81	Exploring the origin and degree of genetic isolation of <i>Anopheles gambiae</i> from the islands of São Tomé and PrÃncipe, potential sites for testing transgenicâ€based vector control. Evolutionary Applications, 2008, 1, 631-644.	1.5	15
82	High Levels of Hybridization between Molecular Forms of <l>Anopheles gambiae</l> from Guinea Bissau. Journal of Medical Entomology, 2008, 45, 1057-1063.	0.9	64
83	A Primer-Introduced Restriction Analysis-Polymerase Chain Reaction Method to Detect Knockdown Resistance Mutations in <i>Anopheles gambiae</i> . Journal of Medical Entomology, 2008, 45, 237-241.	0.9	14
84	An alternative approach to detect Trypanosoma in Glossina (Diptera, Glossinidae) without dissection. Journal of Infection in Developing Countries, 2008, 2, 63-7.	0.5	7
85	Genetic population structure of Anopheles gambiae in Equatorial Guinea. Malaria Journal, 2007, 6, 137.	0.8	37
86	Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles gambiae. PLoS ONE, 2007, 2, e1243.	1.1	108
87	Co-occurrence of East and West African kdr mutations suggests high levels of resistance to pyrethroid insecticides in Anopheles gambiae from Libreville, Gabon. Medical and Veterinary Entomology, 2006, 20, 27-32.	0.7	81
88	Do bednets reduce malaria transmission by exophagic mosquitoes?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2005, 99, 901-904.	0.7	16
89	Entomological Characteristics of Malaria Transmission in Manhiça, a Rural Area in Southern Mozambique. Journal of Medical Entomology, 2005, 42, 180-186.	0.9	27
90	Plasmodium species mixed infections in two areas of Manhiça District, Mozambique. International Journal of Biological Sciences, 2005, 1, 96-102.	2.6	33

#	Article	IF	CITATIONS
91	Revisiting the role of introgression vs shared ancestral polymorphisms as key processes shaping genetic diversity in the recently separated sibling species of the Anopheles gambiae complex. Heredity, 2004, 92, 61-68.	1.2	86
92	An island within an island: genetic differentiation of Anopheles gambiae in São Tomé, West Africa, and its relevance to malaria vector control. Heredity, 2003, 91, 407-414.	1.2	32
93	Raised houses reduce mosquito bites. Malaria Journal, 2003, 2, 45.	0.8	50
94	'A mate or a meal'pre-gravid behaviour of female Anopheles gambiae from the islands of São Tomé and PrÃncipe, West Africa. Malaria Journal, 2003, 2, 9.	0.8	43
95	Sex-specific and blood meal-induced proteins of Anopheles gambiae midguts: analysis by two-dimensional gel electrophoresis. Malaria Journal, 2003, 2, 1.	0.8	96
96	Mating does not affect the biting behaviour ofAnopheles gambiaefrom the islands of São Tomé and PrÃncipe, West Africa. Annals of Tropical Medicine and Parasitology, 2003, 97, 751-756.	1.6	17
97	TRANSMISSION OF MIXED PLASMODIUM SPECIES AND PLASMODIUM FALCIPARUM GENOTYPES. American Journal of Tropical Medicine and Hygiene, 2003, 68, 161-168.	0.6	37
98	Transmission of mixed Plasmodium species and Plasmodium falciparum genotypes. American Journal of Tropical Medicine and Hygiene, 2003, 68, 161-8.	0.6	17
99	Male size does not affect mating success (ofAnopheles gambiaein São Tomé). Medical and Veterinary Entomology, 2002, 16, 109-111.	0.7	51
100	Genetic structure of Anopheles gambiae (Diptera: Culicidae) in Sao Tome and Principe (West Africa): implications for malaria control. Molecular Ecology, 2002, 11, 2183-2187.	2.0	34
101	The impact of indoor residual spraying with malathion on malaria in refugee camps in eastern Sudan. Acta Tropica, 2001, 80, 1-8.	0.9	35
102	Dogs as a Favored Host Choice of <i>Anopheles gambiae</i> sensu stricto (Diptera: Culicidae) of São Tomé, West Africa. Journal of Medical Entomology, 2001, 38, 122-125.	0.9	44
103	Plasmodium sp.: Optimal Protocols for PCR Detection of Low Parasite Numbers from Mosquito (Anopheles sp.) Samples. Experimental Parasitology, 2000, 94, 269-272.	0.5	48
104	Malaria in São Tomé and PrıÌncipe: parasite prevalences and vector densities. Acta Tropica, 2000, 76, 185-193.	0.9	51
105	Dipeptide derivatives of primaquine as transmission-blocking antimalarials: effect of aliphatic side-chain acylation on the gametocytocidal activity and on the formation of carboxyprimaquine in rat liver homogenates. Pharmaceutical Research, 1999, 16, 949-955.	1.7	34
106	A clonal Plasmodium falciparum population in an isolated outbreak of malaria in the Republic of Cabo Verde. Parasitology, 1999, 118, 347-355.	0.7	47
107	The palpal ratio method compared with PCR to distinguish between Anopheles gambiae s.s. and A. melas from Guinea Bissau, West Africa. Acta Tropica, 1998, 70, 101-107.	0.9	7
108	Simplified methodology for PCR investigation of midguts from mosquitoes of theAnopheles gambiaecomplex, in which the vector andPlasmodiumspecies can both be identified. Annals of Tropical Medicine and Parasitology, 1997, 91, 217-219.	1.6	8