
John McDaniel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1711398/publications.pdf Version: 2024-02-01

Ιομή Μαθλημεί

#	Article	IF	CITATIONS
1	Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. Journal of Applied Physiology, 2013, 115, 355-364.	2.5	159
2	Acute Reversal of Endothelial Dysfunction in the Elderly After Antioxidant Consumption. Hypertension, 2012, 59, 818-824.	2.7	110
3	Vascular Dysfunction and Chronic Obstructive Pulmonary Disease. Hypertension, 2014, 63, 459-467.	2.7	70
4	Does Brachial Artery Flow–Mediated Vasodilation Provide a Bioassay for NO?. Hypertension, 2013, 62, 345-351.	2.7	56
5	Hyperammonemia results in reduced muscle function independent of muscle mass. American Journal of Physiology - Renal Physiology, 2016, 310, G163-G170.	3.4	56
6	Attenuated exercise induced hyperaemia with age: mechanistic insight from passive limb movement. Journal of Physiology, 2010, 588, 4507-4517.	2.9	54
7	Limb movement-induced hyperemia has a central hemodynamic component: evidence from a neural blockade study. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1693-H1700.	3.2	48
8	Passive limb movement: evidence of mechanoreflex sex specificity. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H154-H161.	3.2	46
9	Central and peripheral contributors to skeletal muscle hyperemia: response to passive limb movement. Journal of Applied Physiology, 2010, 108, 76-84.	2.5	39
10	The Effect of Parental Involvement on Children's Physical Activity. Journal of Pediatrics, 2016, 170, 206-210.	1.8	37
11	Joint-Specific Power-Pedaling Rate Relationships During Maximal Cycling. Journal of Applied Biomechanics, 2014, 30, 423-430.	0.8	36
12	Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1885-H1891.	3.2	33
13	Alterations in neuromuscular function and perceptual responses following acute eccentric cycling exercise. European Journal of Applied Physiology, 2010, 110, 1225-1233.	2.5	32
14	Vascular Function and the Role of Oxidative Stress in Heart Failure, Heart Transplant, and Beyond. Hypertension, 2012, 60, 659-668.	2.7	32
15	Human skeletal muscle feed arteries studiedin vitro: the effect of temperature on α1-adrenergic responsiveness. Experimental Physiology, 2011, 96, 907-918.	2.0	30
16	Fatigue is specific to working muscles: no cross-over with single-leg cycling in trained cyclists. European Journal of Applied Physiology, 2013, 113, 479-488.	2.5	30
17	Understanding exercise-induced hyperemia: central and peripheral hemodynamic responses to passive limb movement in heart transplant recipients. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1653-H1659.	3.2	29
18	Torso Stabilization Reduces the Metabolic Cost of Producing Cycling Power. Applied Physiology, Nutrition, and Metabolism, 2005, 30, 433-441.	1.7	27

JOHN MCDANIEL

#	Article	IF	CITATIONS
19	Cardiovascular responses to counterweighted single-leg cycling: implications for rehabilitation. European Journal of Applied Physiology, 2014, 114, 961-968.	2.5	27
20	Human muscle length-dependent changes in blood flow. Journal of Applied Physiology, 2012, 112, 560-565.	2.5	26
21	The Influence of Exercise on Cognitive Performance in Normobaric Hypoxia. High Altitude Medicine and Biology, 2015, 16, 298-305.	0.9	24
22	Limb blood flow and tissue perfusion during exercise with blood flow restriction. European Journal of Applied Physiology, 2019, 119, 377-387.	2.5	20
23	Knee extension with blood flow restriction: Impact of cuff pressure on hemodynamics. European Journal of Applied Physiology, 2020, 120, 79-90.	2.5	19
24	Biomechanics of Counterweighted One-Legged Cycling. Journal of Applied Biomechanics, 2016, 32, 78-85.	0.8	17
25	Effects of Locomotor Muscle Fatigue on Joint-Specific Power Production during Cycling. Medicine and Science in Sports and Exercise, 2012, 44, 1504-1511.	0.4	16
26	What Lies Beneath: Why Some Pressure Injuries May Be Unpreventable for Individuals With Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2019, 100, 1042-1049.	0.9	16
27	The Feasibility of Blood Flow Restriction Exercise in Patients With Incomplete Spinal Cord Injury. PM and R, 2018, 10, 1368-1379.	1.6	15
28	The effect of shortening history on isometric and dynamic muscle function. Journal of Biomechanics, 2010, 43, 606-611.	2.1	13
29	Vascular function and multiple sclerosis. Journal of Neurology, 2011, 258, 2036-2042.	3.6	13
30	Bison meat has a lower atherogenic risk than beef in healthy men. Nutrition Research, 2013, 33, 293-302.	2.9	13
31	Setting the pace: insights and advancements gained while preparing for an FES bike race. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 118.	4.6	13
32	Physiological Responses to Acute Cycling With Blood Flow Restriction. Frontiers in Physiology, 2022, 13, 800155.	2.8	10
33	Passive limb movement intervals results in repeated hyperemic responses in those with paraplegia. Spinal Cord, 2018, 56, 940-948.	1.9	9
34	The Effects of Cold and Lower Body Negative Pressure on Cardiovascular Homeostasis. BioMed Research International, 2015, 2015, 1-6.	1.9	5
35	The cardiovascular response to passive movement is joint dependent. Physiological Reports, 2016, 4, e12721.	1.7	4
36	Exaggerated post exercise hypotension following concentric but not eccentric resistance exercise: Implications for metabolism. European Journal of Sport Science, 2019, 19, 983-993.	2.7	4

JOHN MCDANIEL

#	Article	IF	CITATIONS
37	Exercise Improves Mood State in Normobaric Hypoxia. Aerospace Medicine and Human Performance, 2015, 86, 976-981.	0.4	3
38	Repeated Bouts of Passive Limb Movement Result in a Sustained Hyperemic Response in Those with Paraplegia. Medicine and Science in Sports and Exercise, 2018, 50, 551.	0.4	3
39	Response to Letter to the Editor: a counterweight is not necessary to implement simple, natural and comfortable single-leg cycle training. European Journal of Applied Physiology, 2014, 114, 2457-2458.	2.5	2
40	Single leg aerobic capacity and strength in individuals with surgically repaired anterior cruciate ligaments. Physical Therapy in Sport, 2020, 46, 131-136.	1.9	2
41	Biomechanics Of Single- And Double-leg Cycling. Medicine and Science in Sports and Exercise, 2015, 47, 951.	0.4	0
42	Acute Antioxidant Consumption Improves Vascular Function in the Elderly. FASEB Journal, 2010, 24, 1039.15.	0.5	0
43	Cardiac Reinnervation in Heart Transplant Recipients Assessed by Mechanoreceptor Stimulation. Medicine and Science in Sports and Exercise, 2014, 46, 662.	0.4	0
44	Use of Passive Exercise to Transiently Increase Blood Flow in the Lower and Upper Extremities. Medicine and Science in Sports and Exercise, 2014, 46, 12.	0.4	0
45	Should Baseline Shear Rate Be Included in Flow Mediated Dilation Calculations?. Medicine and Science in Sports and Exercise, 2015, 47, 158.	0.4	0
46	Comparing The Physiological Responses To Single and Double Leg Cycling In Older Individuals. Medicine and Science in Sports and Exercise, 2016, 48, 35.	0.4	0
47	Physiological Responses to Counterweighted Single-Leg Cycling in Older Males. International Journal of Exercise Science, 2020, 13, 1487-1500.	0.5	0
48	Design of an eccentric recumbent ergometer to elicit delayed onset muscle soreness. , 2021, 1, 3.		0