
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1711109/publications.pdf Version: 2024-02-01

ACHOK KUMAD

#	Article	IF	CITATIONS
1	Designing Novel AAD Pooling in Hardware for a Convolutional Neural Network Accelerator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 303-314.	2.1	23
2	Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy. Nature Communications, 2022, 13, 2201.	5.8	10
3	Therapeutic Targeting of PTEN in Duchenne Muscular Dystrophy. Molecular Therapy, 2021, 29, 8-9.	3.7	2
4	Self-Healing Router Approach for High-Performance Network-on-Chip. IEEE Open Journal of Circuits and Systems, 2021, 2, 485-496.	1.4	1
5	MyD88â€mediated signaling intercedes in neurogenic muscle atrophy through multiple mechanisms. FASEB Journal, 2021, 35, e21821.	0.2	10
6	H19Xâ€encoded miRâ€322(424)/miRâ€503 regulates muscle mass by targeting translation initiation factors. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 2174-2186.	2.9	9
7	The IRE1/XBP1 signaling axis promotes skeletal muscle regeneration through a cell non-autonomous mechanism. ELife, 2021, 10, .	2.8	11
8	Machine Learning-Based Approach for Hardware Faults Prediction. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3880-3892.	3.5	59
9	An Efficient Algorithm to Solve Transshipment Problem in Uncertain Environment. International Journal of Fuzzy Systems, 2020, 22, 2613-2624.	2.3	3
10	TAK1 preserves skeletal muscle mass and mitochondrial function through redox homeostasis. FASEB BioAdvances, 2020, 2, 538-553.	1.3	11
11	Physiological Biomimetic Culture System for Pig and Human Heart Slices. Circulation Research, 2019, 125, 628-642.	2.0	60
12	Economic LSTM Approach for Recurrent Neural Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1885-1889.	2.2	45
13	The Toll-Like Receptor/MyD88/XBP1 Signaling Axis Mediates Skeletal Muscle Wasting during Cancer Cachexia. Molecular and Cellular Biology, 2019, 39, .	1.1	37
14	ER Stress and Unfolded Protein Response in Cancer Cachexia. Cancers, 2019, 11, 1929.	1.7	40
15	PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB Journal, 2019, 33, 1946-1962.	0.2	45
16	Fabrication of ferroelectric tunnel junction using superconducting and magnetic electrodes. Vacuum, 2019, 159, 464-467.	1.6	6
17	Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis. Journal of Molecular Cell Biology, 2019, 11, 53-66.	1.5	19
18	<scp>ER</scp> stress in skeletal muscle remodeling and myopathies. FEBS Journal, 2019, 286, 379-398.	2.2	96

ASHOK KUMAR

#	Article	IF	CITATIONS
19	A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. Journal of Molecular Cell Biology, 2018, 10, 102-117.	1.5	56
20	Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. Journal of Cellular Physiology, 2018, 233, 67-78.	2.0	135
21	TAK1 regulates skeletal muscle mass and mitochondrial function. JCI Insight, 2018, 3, .	2.3	38
22	MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-deficient mdx mice. Human Molecular Genetics, 2018, 27, 3449-3463.	1.4	15
23	TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart. Journal of Molecular and Cellular Cardiology, 2018, 121, 107-123.	0.9	26
24	Ethyl acetate fraction of Eclipta alba: a potential phytopharmaceutical targeting adipocyte differentiation. Biomedicine and Pharmacotherapy, 2017, 96, 572-583.	2.5	13
25	Studies of ferroelectric properties and leakage current behaviour of microwave sintered ferroelectric Na _{0.5} Bi _{0.5} TiO ₃ ceramic. Ferroelectrics, 2017, 517, 25-33.	0.3	28
26	MyD88 promotes myoblast fusion in a cell-autonomous manner. Nature Communications, 2017, 8, 1624.	5.8	46
27	Effects of omega-3 on matrix metalloproteinase-9, myoblast transplantation and satellite cell activation in dystrophin-deficient muscle fibers. Cell and Tissue Research, 2017, 369, 591-602.	1.5	8
28	The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. ELife, 2017, 6, .	2.8	63
29	Isolation, Culturing, and Differentiation of Primary Myoblasts from Skeletal Muscle of Adult Mice. Bio-protocol, 2017, 7, .	0.2	60
30	Distinct roles of TRAF6 and TAK1 in the regulation of adipocyte survival, thermogenesis program, and high-fat diet-induced obesity. Oncotarget, 2017, 8, 112565-112583.	0.8	16
31	Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. Journal of Molecular Medicine, 2016, 94, 853-866.	1.7	53
32	Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. FASEB Journal, 2016, 30, 3053-3068.	0.2	104
33	Toll-like receptor signalling in regenerative myogenesis: friend and foe. Journal of Pathology, 2016, 239, 125-128.	2.1	24
34	Isolation, Culture, and Staining of Single Myofibers. Bio-protocol, 2016, 6, .	0.2	18
35	TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nature Communications, 2015, 6, 10123.	5.8	56
36	Elevated levels of TWEAK in skeletal muscle promote visceral obesity, insulin resistance, and metabolic dysfunction. FASEB Journal, 2015, 29, 988-1002.	0.2	21

ASHOK KUMAR

#	Article	IF	CITATIONS
37	TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis. Journal of Clinical Investigation, 2015, 126, 151-168.	3.9	57
38	DNA Methyltransferase 3a and Mitogen-activated Protein Kinase Signaling Regulate the Expression of Fibroblast Growth Factor-inducible 14 (Fn14) during Denervation-induced Skeletal Muscle Atrophy. Journal of Biological Chemistry, 2014, 289, 19985-19999.	1.6	30
39	Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Human Molecular Genetics, 2014, 23, 1492-1505.	1.4	28
40	TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction. Frontiers in Immunology, 2014, 5, 18.	2.2	53
41	Regulatory circuitry of TWEAKâ€Fn14 system and PGCâ€1α in skeletal muscle atrophy program. FASEB Journal, 2014, 28, 1398-1411.	0.2	59
42	The TWEAK–Fn14 dyad is involved in age-associated pathological changes in skeletal muscle. Biochemical and Biophysical Research Communications, 2014, 446, 1219-1224.	1.0	29
43	The TWEAK-Fn14 pathway: A potent regulator of skeletal muscle biology in health and disease. Cytokine and Growth Factor Reviews, 2014, 25, 215-225.	3.2	49
44	Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy. Frontiers in Cell and Developmental Biology, 2014, 2, 11.	1.8	47
45	Prevalence of Arcobacter spp. in Humans, Animals and Foods of Animal Origin in India Based on Cultural Isolation, Antibiogram, PCR and Multiplex PCR Detection. Asian Journal of Animal and Veterinary Advances, 2014, 9, 452-466.	0.3	8
46	TWEAK promotes exercise intolerance by decreasing skeletal muscle oxidative phosphorylation capacity. Skeletal Muscle, 2013, 3, 18.	1.9	30
47	Wasting mechanisms in muscular dystrophy. International Journal of Biochemistry and Cell Biology, 2013, 45, 2266-2279.	1.2	115
48	Proinflammatory Cytokine Tumor Necrosis Factor (TNF)-like Weak Inducer of Apoptosis (TWEAK) Suppresses Satellite Cell Self-renewal through Inversely Modulating Notch and NF-κB Signaling Pathways. Journal of Biological Chemistry, 2013, 288, 35159-35169.	1.6	36
49	Signaling Mechanisms in Mammalian Myoblast Fusion. Science Signaling, 2013, 6, re2.	1.6	174
50	Matrix Metalloproteinase-9 Inhibition Improves Proliferation and Engraftment of Myogenic Cells in Dystrophic Muscle of mdx Mice. PLoS ONE, 2013, 8, e72121.	1.1	65
51	TWEAK and TRAF6 regulate skeletal muscle atrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 233-239.	1.3	85
52	The E3 Ubiquitin Ligase TRAF6 Intercedes in Starvation-Induced Skeletal Muscle Atrophy through Multiple Mechanisms. Molecular and Cellular Biology, 2012, 32, 1248-1259.	1.1	126
53	Method development and validation: Skills and tricks. Chronicles of Young Scientists, 2012, 3, 3.	0.4	11
54	Reciprocal Interaction between TRAF6 and Notch Signaling Regulates Adult Myofiber Regeneration upon Injury. Molecular and Cellular Biology, 2012, 32, 4833-4845.	1.1	30

ASHOK KUMAR

#	Article	IF	CITATIONS
55	The TWEAK-Fn14 System: Breaking the Silence of Cytokine-Induced Skeletal Muscle Wasting. Current Molecular Medicine, 2012, 12, 3-13.	0.6	43
56	Sphingosine-1-Phosphate Enhances Satellite Cell Activation in Dystrophic Muscles through a S1PR2/STAT3 Signaling Pathway. PLoS ONE, 2012, 7, e37218.	1.1	64
57	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
58	TWEAK causes myotube atrophy through coordinated activation of ubiquitinâ€proteasome system, autophagy, and caspases. Journal of Cellular Physiology, 2012, 227, 1042-1051.	2.0	72
59	Gene Profiling Studies in Skeletal Muscle by Quantitative Real-Time Polymerase Chain Reaction Assay. Methods in Molecular Biology, 2012, 798, 311-324.	0.4	9
60	Therapeutic drug monitoring by reverse lontophoresis. Journal of Basic and Clinical Pharmacy, 2012, 3, 207.	9.3	7
61	UPLC: a preeminent technique in pharmaceutical analysis. Acta Poloniae Pharmaceutica, 2012, 69, 371-80.	0.3	37
62	Elevated levels of active matrix metalloproteinase-9 cause hypertrophy in skeletal muscle of normal and dystrophin-deficient mdx mice. Human Molecular Genetics, 2011, 20, 4345-4359.	1.4	63
63	TRAF6 coordinates the activation of autophagy and ubiquitin-proteasome systems in atrophying skeletal muscle. Autophagy, 2011, 7, 555-556.	4.3	70
64	Osteopontin-Stimulated Expression of Matrix Metalloproteinase-9 Causes Cardiomyopathy in the mdx Model of Duchenne Muscular Dystrophy. Journal of Immunology, 2011, 187, 2723-2731.	0.4	57
65	Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. Journal of Experimental Medicine, 2011, 208, i2-i2.	4.2	2
66	Therapeutic targeting of signaling pathways in muscular dystrophy. Journal of Molecular Medicine, 2010, 88, 155-166.	1.7	40
67	Tumor Necrosis Factor-α Regulates Distinct Molecular Pathways and Gene Networks in Cultured Skeletal Muscle Cells. PLoS ONE, 2010, 5, e13262.	1.1	76
68	Dlk1 Is Necessary for Proper Skeletal Muscle Development and Regeneration. PLoS ONE, 2010, 5, e15055.	1.1	108
69	The TWEAK–Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. Journal of Cell Biology, 2010, 188, 833-849.	2.3	205
70	Transforming Growth Factor-β-activated Kinase 1 Is an Essential Regulator of Myogenic Differentiation. Journal of Biological Chemistry, 2010, 285, 6401-6411.	1.6	38
71	Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. Journal of Cell Biology, 2010, 191, 1395-1411.	2.3	192
72	Matrix Metalloproteinase Inhibitor Batimastat Alleviates Pathology and Improves Skeletal Muscle Function in Dystrophin-Deficient mdx Mice. American Journal of Pathology, 2010, 177, 248-260.	1.9	71

#	Article	IF	CITATIONS
73	Genetic Ablation of TWEAK Augments Regeneration and Post-Injury Growth of Skeletal Muscle in Mice. American Journal of Pathology, 2010, 177, 1732-1742.	1.9	53
74	Genomic Profiling of Messenger RNAs and MicroRNAs Reveals Potential Mechanisms of TWEAK-Induced Skeletal Muscle Wasting in Mice. PLoS ONE, 2010, 5, e8760.	1.1	73
75	TNF-Like Weak Inducer of Apoptosis (TWEAK) Activates Proinflammatory Signaling Pathways and Gene Expression through the Activation of TGF-Î ² -Activated Kinase 1. Journal of Immunology, 2009, 182, 2439-2448.	0.4	62
76	Tumor Necrosis Factor-related Weak Inducer of Apoptosis Augments Matrix Metalloproteinase 9 (MMP-9) Production in Skeletal Muscle through the Activation of Nuclear Factor-κB-inducing Kinase and p38 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 2009, 284, 4439-4450.	1.6	105
77	Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Human Molecular Genetics, 2009, 18, 2584-2598.	1.4	141
78	Protein–DNA array-based identification of transcription factor activities differentially regulated in skeletal muscle of normal and dystrophin-deficient mdx mice. Molecular and Cellular Biochemistry, 2008, 312, 17-24.	1.4	29
79	Nuclear factor-kappa B signaling in skeletal muscle atrophy. Journal of Molecular Medicine, 2008, 86, 1113-1126.	1.7	338
80	Regulation of Intracellular Signal Transduction Pathways by Mechanosensitive Ion Channels. , 2008, , 303-327.		4
81	Tumor Necrosis Factor-α Augments Matrix Metalloproteinase-9 Production in Skeletal Muscle Cells through the Activation of Transforming Growth Factor-β-activated Kinase 1 (TAK1)-dependent Signaling Pathway. Journal of Biological Chemistry, 2007, 282, 35113-35124.	1.6	53
82	Transgenic Overexpression of Pregnancy-Associated Plasma Protein-A Increases the Somatic Growth and Skeletal Muscle Mass in Mice. Endocrinology, 2007, 148, 6176-6185.	1.4	33
83	TNFâ€related weak inducer of apoptosis (TWEAK) is a potent skeletal muscleâ€wasting cytokine. FASEB Journal, 2007, 21, 1857-1869.	0.2	204
84	Fibroblast Growth Factor Inducible 14 (Fn14) Is Required for the Expression of Myogenic Regulatory Factors and Differentiation of Myoblasts into Myotubes. Journal of Biological Chemistry, 2007, 282, 15000-15010.	1.6	76
85	Regulation of phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B signaling pathways in dystrophin-deficient skeletal muscle in response to mechanical stretch. Journal of Cellular Physiology, 2006, 208, 575-585.	2.0	92
86	Tumor Necrosis Factor-like Weak Inducer of Apoptosis Inhibits Skeletal Myogenesis through Sustained Activation of Nuclear Factor-I⁰B and Degradation of MyoD Protein. Journal of Biological Chemistry, 2006, 281, 10327-10336.	1.6	139
87	Tumor necrosis factorâ€like weak inducer of apoptosis (TWEAK) inhibits skeletal myogenesis through sustained activation of Nuclear Factorâ€kappa B and degradation of MyoD protein. FASEB Journal, 2006, 20, A392.	0.2	0
88	PI3K/Akt signaling pathway contributes to the activation of NFâ€kappaB transcription factor in dystrophinâ€deficient skeletal muscles in response to mechanical stress. FASEB Journal, 2006, 20, A802.	0.2	0
89	Inhibition of mechanosensitive cation channels inhibits myogenic differentiation by suppressing the expression of myogenic regulatory factors and caspaseâ€3 activity. FASEB Journal, 2005, 19, 1986-1997.	0.2	31
90	Pregnancy-associated Plasma Protein-A Regulates Myoblast Proliferation and Differentiation through an Insulin-like Growth Factor-dependent Mechanism. Journal of Biological Chemistry, 2005, 280, 37782-37789.	1.6	42

#	Article	IF	CITATIONS
91	Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB Journal, 2004, 18, 102-113.	0.2	141
92	Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Racâ€1 GTPase, and NFâ€kB transcription factor. FASEB Journal, 2004, 18, 1524-1535.	0.2	105
93	Nuclear factor-?B: its role in health and disease. Journal of Molecular Medicine, 2004, 82, 434-48.	1.7	834
94	CCAAT/Enhancer-binding Protein and Activator Protein-1 Transcription Factors Regulate the Expression of Interleukin-8 through the Mitogen-activated Protein Kinase Pathways in Response to Mechanical Stretch of Human Airway Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 18868-18876.	1.6	74
95	Mechanical stretch activates nuclear factorâ€kappaB, activator proteinâ€1, and mitogenâ€activated protein kinases in lung parenchyma: implications in asthma. FASEB Journal, 2003, 17, 1800-1811.	0.2	89
96	Mechanical stress activates the nuclear factorâ€kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB Journal, 2003, 17, 386-396.	0.2	244
97	Distinct Signaling Pathways Are Activated in Response to Mechanical Stress Applied Axially and Transversely to Skeletal Muscle Fibers. Journal of Biological Chemistry, 2002, 277, 46493-46503.	1.6	84
98	Stereoselective urinary excretion of bupivacaine and its metabolites during epidural infusion. , 1999, 11, 50-55.		15
99	Human immunodeficiency virus-1-tat induces matrix metalloproteinase-9 in monocytes through protein tyrosine phosphatase-mediated activation of nuclear transcription factor NF-κB. FEBS Letters, 1999, 462, 140-144.	1.3	53
100	Assay for redox-sensitive kinases. Methods in Enzymology, 1999, 300, 339-345.	0.4	19
101	Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) inhibits TNF-induced NF-κB activation, lκB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene, 1998, 17, 913-918.	2.6	160
102	Endotoxin-induced protein phosphorylation in macrophages is modulated by tumor cells. International Journal of Immunopharmacology, 1998, 20, 99-110.	1.1	3
103	Curcumin (Diferuloylmethane) Inhibition of Tumor Necrosis Factor (TNF)-Mediated Adhesion of Monocytes to Endothelial Cells by Suppression of Cell Surface Expression of Adhesion Molecules and of Nuclear Factor-κB Activation. Biochemical Pharmacology, 1998, 55, 775-783.	2.0	234
104	Sanguinarine (Pseudochelerythrine) Is a Potent Inhibitor of NF-κB Activation, IκBα Phosphorylation, and Degradation. Journal of Biological Chemistry, 1997, 272, 30129-30134.	1.6	257
105	Effect of prolactin on nitric oxide and interleukin-1 production of murine peritoneal macrophages: Role of Ca2+ and protein kinase C. International Journal of Immunopharmacology, 1997, 19, 129-133.	1.1	31
106	Effect of Tumor Growth on the Blastogenic Response of Splenocytes: A Role of Macrophage-Derived Nitric Oxide. Immunological Investigations, 1996, 25, 413-423.	1.0	27
107	Gangliosides Produced by a T Cell Lymphoma Inhibit the Production of Reactive Nitrogen Intermediates by Murine Peritoneal Macrophages Journal of Clinical Biochemistry and Nutrition, 1996, 21, 171-182.	0.6	8
108	Effect of cisplatin administration on the proliferation and differentiation of bone marrow cells of tumourâ€bearing mice. Immunology and Cell Biology, 1995, 73, 220-225.	1.0	13

#	Article	IF	CITATIONS
109	Effect of cisplatin and FK565 on the activation of tumor-associated and bone marrow-derived macrophages by Dalton's lymphoma. International Journal of Immunopharmacology, 1995, 17, 1-7.	1.1	21
110	Effect of Dalton's lymphoma on the antigen presentation of murine peritoneal macrophages. Cancer Letters, 1995, 92, 151-157.	3.2	13
111	Estrogenâ€related receptor alpha is an <scp>AMPK</scp> â€regulated factor that promotes ischemic muscle revascularization and recovery in dietâ€induced obese mice. FASEB BioAdvances, 0, , .	1.3	8