
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1711024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leadershipstile im Kontext von Schulentwicklungsprozessen. Leadership Education Personality an Interdisciplinary Journal, 2021, 3, 61-77.	0.5	0
2	Contribution of D1R-expressing neurons of the dorsal dentate gyrus and Cav1.2 channels in extinction of cocaine conditioned place preference. Neuropsychopharmacology, 2020, 45, 1506-1517.	2.8	9
3	The cGMP system: components and function. Biological Chemistry, 2020, 401, 447-469.	1.2	43
4	Heart-Microcirculation Connection. Hypertension, 2020, 76, 1637-1648.	1.3	10
5	Preservice teachers' profiles of motivation for choosing teaching as a career and their effects on self-efficacy. Zeitschrift Für Bildungsforschung, 2020, 10, 317-335.	0.8	7
6	Protein Kinase G Is Involved in Acute but Not in Long-Term Regulation of Renin Secretion. Frontiers in Pharmacology, 2019, 10, 800.	1.6	11
7	Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Annals of the Rheumatic Diseases, 2018, 77, 459-459.	0.5	33
8	A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology. Basic Research in Cardiology, 2018, 113, 31.	2.5	35
9	PKC and calcium channel trafficking. Channels, 2018, 12, 15-16.	1.5	5
10	Anion and fluid secretory response of the murine jejunum to the heatâ€stable Eschericia coli enterotoxin (STa) analogue linaclotide: Involvement of NHE3, Slc26a6, CFTR, proteinkinase GII (cGKII) and NHERF1â€3 FASEB Journal, 2018, 32, 747.23.	0.2	0
11	cGMP Signaling Increases Antioxidant Gene Expression by Activating Forkhead Box O3A in the Colon Epithelium. American Journal of Pathology, 2017, 187, 377-389.	1.9	13
12	Ser ¹⁹²⁸ phosphorylation by PKA stimulates the L-type Ca ²⁺ channel Ca _V 1.2 and vasoconstriction during acute hyperglycemia and diabetes. Science Signaling, 2017, 10, .	1.6	85
13	Phosphorylation of Ser ¹⁹²⁸ mediates the enhanced activity of the L-type Ca ²⁺ channel Ca _v 1.2 by the l² ₂ -adrenergic receptor in neurons. Science Signaling, 2017, 10, .	1.6	91
14	Inhibition of the <scp>TGF</scp> β signalling pathway by <scp>cGMP</scp> and <scp>cGMP</scp> â€dependent kinase I in renal fibrosis. FEBS Open Bio, 2017, 7, 550-561.	1.0	27
15	Beta-adrenergic regulation of the heart expressing the Ser1700A/Thr1704A mutated Cav1.2 channel. Journal of Molecular and Cellular Cardiology, 2017, 111, 10-16.	0.9	11
16	Altered Synaptic Membrane Retrieval after Strong Stimulation of Cerebellar Granule Neurons in Cyclic GMP-Dependent Protein Kinase II (cGKII) Knockout Mice. International Journal of Molecular Sciences, 2017, 18, 2281.	1.8	4
17	Involvement of Cyclic Guanosine Monophosphate-Dependent Protein Kinase I in Renal Antifibrotic Effects of Serelaxin. Frontiers in Pharmacology, 2016, 7, 195.	1.6	14
18	Phosphorylation of Ca _v 1.2 on S1928 uncouples the Lâ€ŧype Ca ²⁺ channel from the β ₂ adrenergic receptor. EMBO Journal, 2016, 35, 1330-1345.	3.5	61

#	Article	IF	CITATIONS
19	Academic self-regulation as a function of age: the mediating role of autonomy support and differentiation in school. Social Psychology of Education, 2016, 19, 729-748.	1.2	27
20	Iron deficiency anemia in cyclic GMP kinase knockout mice. Haematologica, 2016, 101, e48-e51.	1.7	11
21	Myoscape controls cardiac calcium cycling and contractility via regulation of L-type calcium channel surface expression. Nature Communications, 2016, 7, 11317.	5.8	20
22	Anemia of cGKI deficient mice is caused by intestinal bleeding. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	0
23	Network compensation of cyclic GMP-dependent protein kinase II knockout in the hippocampus by Ca ²⁺ -permeable AMPA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3122-3127.	3.3	39
24	Murine cardiac growth, TRPC channels, and cGMP kinase I. Pflugers Archiv European Journal of Physiology, 2015, 467, 2229-2234.	1.3	12
25	Emerging Alternative Functions for the Auxiliary Subunits of the Voltage- Gated Calcium Channels. Current Molecular Pharmacology, 2015, 8, 162-168.	0.7	21
26	A Specific Role for the REV-ERBα–Controlled L-Type Voltage-Gated Calcium Channel Ca _V 1.2 in Resetting the Circadian Clock in the Late Night. Journal of Biological Rhythms, 2014, 29, 288-298.	1.4	41
27	Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12925-12929.	3.3	62
28	Expression of cGMP-dependent protein kinase type I in mature white adipocytes. Biochemical and Biophysical Research Communications, 2014, 452, 151-156.	1.0	11
29	Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends in Pharmacological Sciences, 2014, 35, 404-413.	4.0	55
30	cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits. Neurobiology of Learning and Memory, 2014, 114, 32-39.	1.0	19
31	Truncation of murine CaV1.2 at Asp 1904 increases CaV1.3 expression in embryonic atrial cardiomyocytes. Pflugers Archiv European Journal of Physiology, 2013, 465, 955-964.	1.3	5
32	Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. Basic Research in Cardiology, 2013, 108, 337.	2.5	51
33	Differential effects of PDE5 inhibitors on cardiac dysfunction in the MDX ouse model of Duchenne muscular dystrophy. BMC Pharmacology & Toxicology, 2013, 14, .	1.0	1
34	Spatial memory deficits and motor coordination facilitation in cGMP-dependent protein kinase type II-deficient mice. Neurobiology of Learning and Memory, 2013, 99, 32-37.	1.0	22
35	cGMP-Dependent Protein Kinases (cGK). Methods in Molecular Biology, 2013, 1020, 17-50.	0.4	53
36	The role of cGMP/cGKI signalling and Trpc channels in regulation of vascular tone. Cardiovascular Research, 2013, 100, 280-287.	1.8	20

#	Article	IF	CITATIONS
37	Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I. European Heart Journal, 2013, 34, 1233-1244.	1.0	92
38	Thrombocytosis as a Response to High Interleukin-6 Levels in cGMP-Dependent Protein Kinase I Mutant Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1820-1828.	1.1	16
39	Atrial Natriuretic Peptide–Mediated Inhibition of Microcirculatory Endothelial Ca ²⁺ and Permeability Response to Histamine Involves cGMP-Dependent Protein Kinase I and TRPC6 Channels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2121-2129.	1.1	39
40	Type 2 cGMP-dependent protein kinase regulates proliferation and differentiation in the colonic mucosa. American Journal of Physiology - Renal Physiology, 2012, 303, G209-G219.	1.6	39
41	Deletion of the C-terminal Phosphorylation Sites in the Cardiac β-Subunit Does Not Affect the Basic β-Adrenergic Response of the Heart and the Cav1.2 Channel. Journal of Biological Chemistry, 2012, 287, 22584-22592.	1.6	43
42	Neuronal cGMP kinase I is essential for stimulation of duodenal bicarbonate secretion by luminal acid. FASEB Journal, 2012, 26, 1745-1754.	0.2	18
43	Mutation of the Calmodulin Binding Motif IQ of the L-type Cav1.2 Ca2+ Channel to EQ Induces Dilated Cardiomyopathy and Death. Journal of Biological Chemistry, 2012, 287, 22616-22625.	1.6	26
44	Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. Journal of Clinical Investigation, 2012, 122, 280-290.	3.9	145
45	Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity. PLoS Biology, 2012, 10, e1001283.	2.6	82
46	cGMP kinase I, cardiac hypertrophy and PDE inhibition. BMC Pharmacology, 2011, 11, .	0.4	1
47	Cyclic GMP Kinase I Modulates Glucagon Release From Pancreatic α-Cells. Diabetes, 2011, 60, 148-156.	0.3	22
48	Facilitation and Ca2+-dependent Inactivation Are Modified by Mutation of the Cav1.2 Channel IQ Motif. Journal of Biological Chemistry, 2011, 286, 26702-26707.	1.6	16
49	Phospholipase D regulates vascular smooth muscle tone in mice. FASEB Journal, 2011, 25, 1115.11.	0.2	Ο
50	Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5646-5651.	3.3	97
51	Homeostatic Switch in Hebbian Plasticity and Fear Learning after Sustained Loss of Cav1.2 Calcium Channels. Journal of Neuroscience, 2010, 30, 8367-8375.	1.7	56
52	cGMP Regulated Protein Kinases (cGK). Handbook of Experimental Pharmacology, 2009, , 137-162.	0.9	162
53	cGMP-Dependent Protein Kinase I Is Crucial for Angiogenesis and Postnatal Vasculogenesis. PLoS ONE, 2009, 4, e4879.	1.1	24
54	Anemia and splenomegaly in cGKI-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6771-6776.	3.3	135

#	Article	IF	CITATIONS
55	Unchanged β-Adrenergic Stimulation of Cardiac L-type Calcium Channels in Cav1.2 Phosphorylation Site S1928A Mutant Mice. Journal of Biological Chemistry, 2008, 283, 34738-34744.	1.6	115
56	Role of Smooth Muscle cGMP/cGKI Signaling in Murine Vascular Restenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1244-1250.	1.1	32
57	Phosphorylation of GSK-3β by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes. Journal of Clinical Investigation, 2008, 118, 2986-2986.	3.9	56
58	cGMP signals mainly through cAMP kinase in permeabilized murine aorta. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H237-H244.	1.5	26
59	Rescue of cGMP Kinase I Knockout Mice by Smooth Muscle–Specific Expression of Either Isozyme. Circulation Research, 2007, 101, 1096-1103.	2.0	98
60	IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood, 2007, 109, 552-559.	0.6	139
61	Control of intestinal motility by the Ca v 1.2 Lâ€ŧype calcium channel in mice. FASEB Journal, 2006, 20, 1260-1262.	0.2	52
62	cGMP-dependent Protein Kinase Type I Inhibits TAB1-p38 Mitogen-activated Protein Kinase Apoptosis Signaling in Cardiac Myocytes. Journal of Biological Chemistry, 2006, 281, 32831-32840.	1.6	79
63	The Biology of Cyclic GMP-dependent Protein Kinases. Journal of Biological Chemistry, 2005, 280, 1-4.	1.6	212
64	Role of Hippocampal Cav1.2 Ca2+ Channels in NMDA Receptor-Independent Synaptic Plasticity and Spatial Memory. Journal of Neuroscience, 2005, 25, 9883-9892.	1.7	383
65	Neutrophil Dysfunction in Guanosine 3′,5′-Cyclic Monophosphate-Dependent Protein Kinase I-Deficient Mice. Journal of Immunology, 2005, 175, 1919-1929.	0.4	16
66	Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3253-3257.	3.3	105
67	cGMP-Dependent Protein Kinase II Modulates mPer1 and mPer2 Gene Induction and Influences Phase Shifts of the Circadian Clock. Current Biology, 2003, 13, 725-733.	1.8	81
68	Impairment of LTD and cerebellar learning by Purkinje cell–specific ablation of cGMP-dependent protein kinase I. Journal of Cell Biology, 2003, 163, 295-302.	2.3	136
69	Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3404-3409.	3.3	152
70	cGMP-mediated signaling via cGKIα is required for the guidance and connectivity of sensory axons. Journal of Cell Biology, 2002, 159, 489-498.	2.3	116
71	Regulation of cGMP-specific Phosphodiesterase (PDE5) Phosphorylation in Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 3310-3317.	1.6	199
72	cGMP-Dependent Protein Kinase I Mediates the Negative Inotropic Effect of cGMP in the Murine Myocardium. Circulation Research, 2002, 90, 18-20.	2.0	173

#	Article	IF	CITATIONS
73	Molecular Determinants of the Interaction between the Inositol 1,4,5-Trisphosphate Receptor-associated cGMP Kinase Substrate (IRAG) and cGMP Kinase Iβ. Journal of Biological Chemistry, 2001, 276, 24153-24159.	1.6	124
74	Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Iβ. Nature, 2000, 404, 197-201.	13.7	438
75	Functional Embryonic Cardiomyocytes after Disruption of the L-type α1C (Ca 1.2) Calcium Channel Gene in the Mouse. Journal of Biological Chemistry, 2000, 275, 39193-39199.	1.6	241
76	Mechanisms of NO/cGMP-Dependent Vasorelaxation. Circulation Research, 2000, 87, 825-830.	2.0	228
77	Differential role of cyclic GMP–dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology, 2000, 118, 108-114.	0.6	126
78	Long-Term Potentiation in the Hippocampal CA1 Region of Mice Lacking cGMP-Dependent Kinases Is Normal and Susceptible to Inhibition of Nitric Oxide Synthase. Journal of Neuroscience, 1999, 19, 48-55.	1.7	123
79	Increased Adhesion and Aggregation of Platelets Lacking Cyclic Guanosine 3′,5′-Monophosphate Kinase I. Journal of Experimental Medicine, 1999, 189, 1255-1264.	4.2	222
80	Dihydropyridine enantiomers block recombinant L-type Ca2+channels by two different mechanisms. Journal of Physiology, 1999, 521, 31-42.	1.3	19
81	The Large Conductance, Voltage-dependent, and Calcium-sensitive K+ Channel, Hslo, Is a Target of cGMP-dependent Protein Kinase Phosphorylation in Vivo. Journal of Biological Chemistry, 1998, 273, 32950-32956.	1.6	159
82	Identification of the Amino Acid Sequences Responsible for High Affinity Activation of cGMP Kinase Iα. Journal of Biological Chemistry, 1997, 272, 10522-10528.	1.6	92
83	Protein Phosphatase 2A Is Essential for the Activation of Ca2+-activated K+ Currents by cGMP-dependent Protein Kinase in Tracheal Smooth Muscle and Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1996, 271, 19760-19767.	1.6	120
84	Role of Cyclic GMP in the Regulation of Neuronal Calcium and Survival by Secreted Forms of βâ€Amyloid Precursor. Journal of Neurochemistry, 1995, 64, 2087-2096.	2.1	125
85	Cyclic GMP-Dependent Protein Kinase and Smooth Muscle Relaxation. Journal of Cardiovascular Pharmacology, 1992, 20, S18-S22.	0.8	16
86	Demonstration of cGMP-dependent protein kinase and cGMP-dependent phosphorylation in cell-free extracts of platelets. FEBS Journal, 1986, 158, 203-210.	0.2	95
87	Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Letters, 1981, 132, 71-74.	1.3	304
88	A protein kinase activity from rat cerebellum stimulated by guanosine-3′:5′-monophosphate. Biochemical and Biophysical Research Communications, 1972, 49, 1100-1107.	1.0	100