Claudia Cosio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1710628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of carbamazepine in aquatic biota. Environmental Sciences: Processes and Impacts, 2022, 24, 209-220.	3.5	4
2	Metabolic, cellular and defense responses to single and co-exposure to carbamazepine and methylmercury in Dreissena polymorpha. Environmental Pollution, 2022, 300, 118933.	7.5	5
3	Subcellular Distribution of Dietary Methyl-Mercury in <i>Gammarus fossarum</i> and Its Impact on the Amphipod Proteome. Environmental Science & amp; Technology, 2021, 55, 10514-10523.	10.0	4
4	New Insights into Impacts of Toxic Metals in Aquatic Environments. Environments - MDPI, 2021, 8, 1.	3.3	6
5	Effects of cadmium, inorganic mercury and methyl-mercury on the physiology and metabolomic profiles of shoots of the macrophyte Elodea nuttallii. Environmental Pollution, 2020, 257, 113557.	7.5	31
6	Biotic formation of methylmercury: A bio–physico–chemical conundrum. Limnology and Oceanography, 2020, 65, 1010-1027.	3.1	98
7	Mercury cycling in freshwater systems - An updated conceptual model. Science of the Total Environment, 2020, 745, 140906.	8.0	58
8	Special Issue on Bioconversion, Bioaccumulation and Toxicity of Mercury in a Changing World. Applied Sciences (Switzerland), 2020, 10, 6548.	2.5	3
9	Inorganic Mercury and Methyl-Mercury Uptake and Effects in the Aquatic Plant Elodea nuttallii: A Review of Multi-Omic Data in the Field and in Controlled Conditions. Applied Sciences (Switzerland), 2020, 10, 1817.	2.5	5
10	New Insights into Cellular Impacts of Metals in Aquatic Animals. Environments - MDPI, 2020, 7, 46.	3.3	14
11	Towards early-warning gene signature of Chlamydomonas reinhardtii exposed to Hg-containing complex media. Aquatic Toxicology, 2019, 214, 105259.	4.0	5
12	Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii. Environmental Pollution, 2019, 250, 331-337.	7.5	19
13	Effects of two-hour exposure to environmental and high concentrations of methylmercury on the transcriptome of the macrophyte Elodea nuttallii. Aquatic Toxicology, 2018, 194, 103-111.	4.0	10
14	<i>Geobacteraceae</i> are important members of mercury-methylating microbial communities of sediments impacted by waste water releases. ISME Journal, 2018, 12, 802-812.	9.8	96
15	Molecular Effects of Inorganic and Methyl Mercury in Aquatic Primary Producers: Comparing Impact to A Macrophyte and A Green Microalga in Controlled Conditions. Geosciences (Switzerland), 2018, 8, 393.	2.2	18
16	Molecular Effects, Speciation, and Competition of Inorganic and Methyl Mercury in the Aquatic Plant <i>Elodea nuttallii</i> . Environmental Science & Technology, 2018, 52, 8876-8884.	10.0	19
17	Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environmental Pollution, 2017, 227, 83-88.	7.5	34
18	Trophic fate of inorganic and methyl-mercury in a macrophyte-chironomid food chain. Journal of Hazardous Materials, 2017, 338, 140-147.	12.4	17

CLAUDIA COSIO

#	Article	IF	CITATIONS
19	Transcriptomic approach for assessment of the impact on microalga and macrophyte of in-situ exposure in river sites contaminated by chlor-alkali plant effluents. Water Research, 2017, 121, 86-94.	11.3	20
20	Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Scientific Reports, 2017, 7, 8034.	3.3	59
21	The class <scp>III</scp> peroxidase <scp>PRX</scp> 17 is a direct target of the <scp>MADS</scp> â€box transcription factor AGAMOUSâ€LIKE15 (<scp>AGL</scp> 15) and participates in lignified tissue formation. New Phytologist, 2017, 213, 250-263.	7.3	88
22	Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms. Environmental Sciences: Processes and Impacts, 2017, 19, 38-49.	3.5	16
23	Long-Term Acclimation to Iron Limitation Reveals New Insights in Metabolism Regulation of Synechococcus sp. PCC7002. Frontiers in Marine Science, 2017, 4, .	2.5	12
24	Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain. Journal of Hazardous Materials, 2016, 320, 401-407.	12.4	13
25	Role of Settling Particles on Mercury Methylation in the Oxic Water Column of Freshwater Systems. Environmental Science & Technology, 2016, 50, 11672-11679.	10.0	99
26	Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress. Aquatic Toxicology, 2016, 180, 218-226.	4.0	15
27	Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery. Environmental Science and Pollution Research, 2016, 23, 22542-22553.	5.3	13
28	Transcriptomic and Physiological Responses of the Green Microalga <i>Chlamydomonas reinhardtii</i> during Short-Term Exposure to Subnanomolar Methylmercury Concentrations. Environmental Science & Technology, 2016, 50, 7126-7134.	10.0	36
29	Dendrochemical assessment of mercury releases from a pond and dredged-sediment landfill impacted by a chlor-alkali plant. Environmental Research, 2016, 148, 122-126.	7.5	33
30	Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania). Environmental Science and Pollution Research, 2016, 23, 10529-10541.	5.3	69
31	Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere, 2015, 128, 56-61.	8.2	76
32	Human exposure to mercury in artisanal small-scale gold mining areas of Kedougou region, Senegal, as a function of occupational activity and fish consumption. Environmental Science and Pollution Research, 2015, 22, 7101-7111.	5.3	45
33	Effects of macrophytes on the fate of mercury in aquatic systems. Environmental Toxicology and Chemistry, 2014, 33, 1225-1237.	4.3	47
34	Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Research, 2014, 49, 391-405.	11.3	93
35	Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii. Aquatic Toxicology, 2014, 155, 275-282.	4.0	33
36	Towards Mechanistic Understanding of Mercury Availability and Toxicity to Aquatic Primary Producers. Chimia, 2014, 68, 799.	0.6	20

CLAUDIA COSIO

#	Article	IF	CITATIONS
37	Physiological and proteomic changes suggest an important role of cell walls in the high tolerance to metals of Elodea nuttallii. Journal of Hazardous Materials, 2013, 263, 575-583.	12.4	37
38	Analysis of the Elodea nuttallii Transcriptome in Response to Mercury and Cadmium Pollution: Development of Sensitive Tools for Rapid Ecotoxicological Testing. Environmental Science & Technology, 2013, 47, 8825-8834.	10.0	41
39	Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: Accumulation in shoots from the water might involve copper transporters. Chemosphere, 2013, 90, 595-602.	8.2	59
40	Effect of Elodea nuttallii Roots on Bacterial Communities and MMHg Proportion in a Hg Polluted Sediment. PLoS ONE, 2012, 7, e45565.	2.5	23
41	Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana. BMC Genomics, 2010, 11, 528.	2.8	51
42	Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 2009, 60, 391-408.	4.8	354
43	An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta, 2009, 229, 823-836.	3.2	48
44	PeroxiBase: The peroxidase database. Phytochemistry, 2007, 68, 1605-1611.	2.9	187
45	PeroxiBase: A class III plant peroxidase database. Phytochemistry, 2006, 67, 534-539.	2.9	68
46	Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environmental and Experimental Botany, 2006, 58, 25-40.	4.2	146
47	Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environmental and Experimental Botany, 2006, 58, 64-74.	4.2	98
48	Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Functional Plant Biology, 2006, 33, 673.	2.1	18
49	Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 2005, 24, 255-265.	5.6	830
50	Distribution of cadmium in leaves of Thlaspi caerulescens. Journal of Experimental Botany, 2005, 56, 765-775.	4.8	176
51	Hyperaccumulation of Cadmium and Zinc in Thlaspi caerulescens and Arabidopsis halleri at the Leaf Cellular Level. Plant Physiology, 2004, 134, 716-725.	4.8	218