Guido Carpino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1710616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 557-588.	17.8	1,155
2	Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology and Hepatology, 2016, 13, 261-280.	17.8	964
3	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	6.4	416
4	Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology, 2011, 54, 2159-2172.	7.3	283
5	Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology, 2020, 72, 470-485.	7.3	203
6	Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical <i>in situ</i> study yielding evidence of maturational lineages. Journal of Anatomy, 2012, 220, 186-199.	1.5	194
7	Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver International, 2019, 39, 7-18.	3.9	193
8	The biliary tree—a reservoir of multipotent stem cells. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 231-240.	17.8	187
9	Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut, 2010, 59, 247-257.	12.1	174
10	Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	4.0	163
11	Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell, 2021, 28, 816-832.	11.1	133
12	The Role of Tissue Macrophage-Mediated Inflammation on NAFLD Pathogenesis and Its Clinical Implications. Mediators of Inflammation, 2017, 2017, 1-15.	3.0	129
13	Hepatic progenitor cells activation, fibrosis, and adipokines production in pediatric nonalcoholic fatty liver disease. Hepatology, 2012, 56, 2142-2153.	7.3	123
14	The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: A new reference frame for disease and regeneration. Hepatology, 2016, 64, 277-286.	7.3	123
15	Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. Journal of Hepatology, 2022, 76, 1109-1121.	3.7	119
16	Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Laboratory Investigation, 2009, 89, 456-469.	3.7	118
17	Role of Docosahexaenoic Acid Treatment in Improving Liver Histology in Pediatric Nonalcoholic Fatty Liver Disease. PLoS ONE, 2014, 9, e88005.	2.5	106
18	Pretreatment prediction of response to ursodeoxycholic acid in primary biliary cholangitis: development and validation of the UDCA Response Score. The Lancet Gastroenterology and Hepatology, 2018, 3, 626-634.	8.1	103

#	Article	IF	CITATIONS
19	Biliary tree stem cells, precursors to pancreatic committed progenitors: Evidence for possible life-long pancreatic organogenesis. Stem Cells, 2013, 31, 1966-1979.	3.2	99
20	Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. Journal of Hepatology, 2015, 63, 1220-1228.	3.7	98
21	Multiple cells of origin in cholangiocarcinoma underlie biological, epidemiological and clinical heterogeneity. World Journal of Gastrointestinal Oncology, 2012, 4, 94.	2.0	95
22	Profiles of Cancer Stem Cell Subpopulations in Cholangiocarcinomas. American Journal of Pathology, 2015, 185, 1724-1739.	3.8	87
23	Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells. Nature Communications, 2015, 6, 8070.	12.8	86
24	Docosahexanoic Acid Plus Vitamin D Treatment Improves Features of NAFLD in Children with Serum Vitamin D Deficiency: Results from a Single Centre Trial. PLoS ONE, 2016, 11, e0168216.	2.5	83
25	Concise review: Clinical programs of stem cell therapies for liver and pancreas. Stem Cells, 2013, 31, 2047-2060.	3.2	80
26	Knockout of secretin receptor reduces large cholangiocyte hyperplasia in mice with extrahepatic cholestasis induced by bile duct ligation. Hepatology, 2010, 52, 204-214.	7.3	79
27	Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Experimental Biology and Medicine, 2013, 238, 549-565.	2.4	64
28	Evidence for multipotent endodermal stem/progenitor cell populations in human gallbladder. Journal of Hepatology, 2014, 60, 1194-1202.	3.7	62
29	Mucin-producing cholangiocarcinoma might derive from biliary tree stem/progenitor cells located in peribiliary glands. Hepatology, 2012, 55, 2041-2042.	7.3	60
30	Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration. Stem Cells International, 2016, 2016, 1-12.	2.5	60
31	Hepatic Stem/Progenitor Cell Activation Differs between Primary Sclerosing and Primary Biliary Cholangitis. American Journal of Pathology, 2018, 188, 627-639.	3.8	59
32	Role of Hepatic Progenitor Cells in Nonalcoholic Fatty Liver Disease Development: Cellular Cross-Talks and Molecular Networks. International Journal of Molecular Sciences, 2013, 14, 20112-20130.	4.1	57
33	Melatonin inhibits cholangiocyte hyperplasia in cholestatic rats by interaction with MT1 but not MT2 melatonin receptors. American Journal of Physiology - Renal Physiology, 2011, 301, G634-G643.	3.4	53
34	Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD) Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway. PLoS ONE, 2016, 11, e0157246.	2.5	50
35	Transplantation of human fetal biliary tree stem/progenitor cells into two patients with advanced liver cirrhosis. BMC Gastroenterology, 2014, 14, 204.	2.0	49
36	Multipotent stem/progenitor cells in the human foetal biliary tree. Journal of Hepatology, 2012, 57, 987-994.	3.7	48

#	Article	IF	CITATIONS
37	Altered gut–liver axis and hepatic adiponectin expression in OSAS: novel mediators of liver injury in paediatric non-alcoholic fatty liver. Thorax, 2015, 70, 769-781.	5.6	47
38	PNPLA3 variant and portal/periportal histological pattern in patients with biopsy-proven non-alcoholic fatty liver disease: a possible role for oxidative stress. Scientific Reports, 2017, 7, 15756.	3.3	45
39	Neoplastic Transformation of the Peribiliary Stem Cell Niche in Cholangiocarcinoma Arisen in Primary Sclerosing Cholangitis. Hepatology, 2019, 69, 622-638.	7.3	45
40	Peribiliary Glands Are Key in Regeneration of the Human Biliary Epithelium After Severe Bile Duct Injury. Hepatology, 2019, 69, 1719-1734.	7.3	44
41	Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. Journal of Anatomy, 2016, 228, 474-486.	1.5	42
42	Modulation of the biliary expression of arylalkylamine N-acetyltransferase alters the autocrine proliferative responses of cholangiocytes in rats. Hepatology, 2013, 57, 1130-1141.	7.3	41
43	Peribiliary Gland Niche Participates in Biliary Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology, 2020, 71, 972-989.	7.3	40
44	Italian Clinical Practice Guidelines on Cholangiocarcinoma – Part I: Classification, diagnosis and staging. Digestive and Liver Disease, 2020, 52, 1282-1293.	0.9	40
45	Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahepatic cholangiocarcinoma. Journal of Hepatology, 2021, 75, 1377-1386.	3.7	40
46	Cholangiocarcinoma: increasing burden of classifications. Hepatobiliary Surgery and Nutrition, 2013, 2, 272-80.	1.5	39
47	Contribution of Resident Stem Cells to Liver and Biliary Tree Regeneration in Human Diseases. International Journal of Molecular Sciences, 2018, 19, 2917.	4.1	38
48	Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis. Cells, 2020, 9, 590.	4.1	38
49	The Fas/Fas ligand apoptosis pathway underlies immunomodulatory properties of human biliary tree stem/progenitor cells. Journal of Hepatology, 2014, 61, 1097-1105.	3.7	37
50	Activation of the IGF1 System Characterizes Cholangiocyte Survival During Progression of Primary Biliary Cirrhosis. Journal of Histochemistry and Cytochemistry, 2007, 55, 327-334.	2.5	35
51	Italian Clinical Practice Guidelines on Cholangiocarcinoma – Part II: Treatment. Digestive and Liver Disease, 2020, 52, 1430-1442.	0.9	35
52	An oestrogen receptor Î ² -selective agonist exerts anti-neoplastic effects in experimental intrahepatic cholangiocarcinoma. Digestive and Liver Disease, 2012, 44, 134-142.	0.9	34
53	Hyaluronan coating improves liver engraftment of transplanted human biliary tree stem/progenitor cells. Stem Cell Research and Therapy, 2017, 8, 68.	5.5	32
54	Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure. Clinical Proteomics, 2019, 16, 37.	2.1	31

#	Article	IF	CITATIONS
55	Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. Annals of Translational Medicine, 2013, 1, 27.	1.7	31
56	Taurocholate Feeding to Bile Duct Ligated Rats Prevents Caffeic Acid-Induced Bile Duct Damage by Changes in Cholangiocyte VEGF Expression. Experimental Biology and Medicine, 2009, 234, 462-474.	2.4	30
57	Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells. Scientific Reports, 2019, 9, 5559.	3.3	30
58	Modulation of Biliary Cancer Chemoâ€Resistance Through MicroRNAâ€Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology, 2020, 72, 982-996.	7.3	30
59	DCLK1, a Putative Stem Cell Marker in Human Cholangiocarcinoma. Hepatology, 2021, 73, 144-159.	7.3	29
60	Laparoscopic Sleeve Gastrectomy Improves Nonalcoholic Fatty Liver Disease–Related Liver Damage in Adolescents by Reshaping Cellular Interactions and Hepatic Adipocytokine Production. Journal of Pediatrics, 2018, 194, 100-108.e3.	1.8	28
61	Accuracy of Transient Elastography in Assessing Fibrosis at Diagnosis in NaÃ⁻ve Patients With Primary Biliary Cholangitis: A Dual Cutâ€Off Approach. Hepatology, 2021, 74, 1496-1508.	7.3	28
62	Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures. PLoS ONE, 2015, 10, e0142124.	2.5	27
63	Activation of Fas/FasL pathway and the role of c-FLIP in primary culture of human cholangiocarcinoma cells. Scientific Reports, 2017, 7, 14419.	3.3	27
64	Peribiliary Glands as a Niche of Extrapancreatic Precursors Yielding Insulin-Producing Cells in Experimental and Human Diabetes. Stem Cells, 2016, 34, 1332-1342.	3.2	22
65	Cryopreservation protocol for human biliary tree stem/progenitors, hepatic and pancreatic precursors. Scientific Reports, 2017, 7, 6080.	3.3	22
66	Role of lactoferrin and its receptors on biliary epithelium. BioMetals, 2018, 31, 369-379.	4.1	21
67	Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas. World Journal of Gastroenterology, 2019, 25, 4343-4359.	3.3	20
68	Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease. Laboratory Investigation, 2016, 96, 1147-1155.	3.7	19
69	Persistent biliary hypoxia and lack of regeneration are key mechanisms in the pathogenesis of posttransplant nonanastomotic strictures. Hepatology, 2022, 75, 814-830.	7.3	17
70	Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells. Scientific Reports, 2021, 11, 2557.	3.3	16
71	Taurocholic acid prevents biliary damage induced by hepatic artery ligation in cholestatic rats. Digestive and Liver Disease, 2010, 42, 709-717.	0.9	15
72	Primary biliary cholangitis management: controversies, perspectives and daily practice implications from an expert panel. Liver International, 2020, 40, 2590-2601.	3.9	15

#	Article	IF	CITATIONS
73	Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials, 2021, 277, 121067.	11.4	15
74	Role of follicleâ€stimulating hormone on biliary cyst growth in autosomal dominant polycystic kidney disease. Liver International, 2013, 33, 914-925.	3.9	14
75	The Contribution of the Adipose Tissue-Liver Axis in Pediatric Patients with Nonalcoholic Fatty Liver Disease after Laparoscopic Sleeve Gastrectomy. Journal of Pediatrics, 2020, 216, 117-127.e2.	1.8	14
76	Adult Human Biliary Tree Stem Cells Differentiate to \hat{l}^2 -Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide. PLoS ONE, 2015, 10, e0134677.	2.5	13
77	The Italian law on body donation: A position paper of the Italian College of Anatomists. Annals of Anatomy, 2021, 238, 151761.	1.9	13
78	Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Frontiers in Medicine, 2020, 7, 479.	2.6	11
79	The fetal liver as cell source for the regenerative medicine of liver and pancreas. Annals of Translational Medicine, 2013, 1, 13.	1.7	11
80	Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut, 2022, , gutjnl-2022-327099.	12.1	11
81	The fascial structures of the rectum and the "so-called mesorectum†an anatomical or a terminological controversy?. Surgical and Radiologic Anatomy, 2010, 32, 189-190.	1.2	10
82	Peribiliary gland damage due to liver transplantation involves peribiliary vascular plexus and vascular endothelial growth factor. European Journal of Histochemistry, 2019, 63, .	1.5	9
83	Molecular Landscape and Therapeutic Strategies in Cholangiocarcinoma: An Integrated Translational Approach towards Precision Medicine. International Journal of Molecular Sciences, 2021, 22, 5613.	4.1	9
84	Melatonin receptor 1A, but not 1B, knockout decreases biliary damage and liver fibrosis during cholestatic liver injury. Hepatology, 2022, 75, 797-813.	7.3	9
85	Cholangiocytes: Cell transplantation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1516-1523.	3.8	7
86	Overexpression of the Vitronectin V10 Subunit in Patients with Nonalcoholic Steatohepatitis: Implications for Noninvasive Diagnosis of NASH. International Journal of Molecular Sciences, 2018, 19, 603.	4.1	7
87	Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors. American Journal of Physiology - Renal Physiology, 2015, 309, G865-G873.	3.4	6
88	Cholangiocarcinoma: Stateâ€ofâ€theâ€art knowledge and challenges. Liver International, 2019, 39, 5-6.	3.9	6
89	The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells, 2022, 11, 1591.	4.1	6
90	Mast cells selectively target large cholangiocytes during biliary injury via H2HRâ€mediated cAMP/pERK1/2 signaling. Hepatology Communications, 2022, 6, 2715-2731.	4.3	6

#	Article	IF	CITATIONS
91	Cholangiocarcinomas: New Insights from the Discovery of Stem Cell Niches in Peribiliary Glands of the Biliary Tree. Advances in Hepatology, 2014, 2014, 1-10.	1.3	5
92	The Propensity of the Human Liver to Form Large Lipid Droplets Is Associated with PNPLA3 Polymorphism, Reduced INSIG1 and NPC1L1 Expression and Increased Fibrogenetic Capacity. International Journal of Molecular Sciences, 2021, 22, 6100.	4.1	5
93	Human biliary tree stem/progenitor cells immunomodulation: Role of hepatocyte growth factor. Hepatology Research, 2017, 47, 465-479.	3.4	4
94	Islet Regeneration and Pancreatic Duct Glands in Human and Experimental Diabetes. Frontiers in Cell and Developmental Biology, 2022, 10, 814165.	3.7	4
95	Current protocols and clinical efficacy of human fetal liver cell therapy in patients with liver disease: A literature review. Cytotherapy, 2022, , .	0.7	3
96	Cell sources for regenerative medicine of the liver and endoderm organs: strategies and perspectives. Stem Cell Investigation, 2016, 3, 91-91.	3.0	2
97	Multilevel heterogeneity of biliary tract cancers may affect the modelling of prognosis. Liver International, 2017, 37, 1773-1775.	3.9	2
98	Vav1 Sustains the In Vitro Differentiation of Normal and Tumor Precursors to Insulin Producing Cells Induced by all-Trans Retinoic Acid (ATRA). Stem Cell Reviews and Reports, 2021, 17, 673-684.	3.8	2
99	Stem Cell Populations Giving Rise to Liver, Biliary Tree, and Pancreas. , 2013, , 283-310.		2
100	FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2â^'/â^' Mouse Model of Primary Sclerosing Cholangitis. Hepatology Communications, 2022, 6, 1574-1588.	4.3	2
101	Hepatic Progenitor Cells and Biliary Tree Stem Cells. , 2020, , 29-35.		1
102	Pancreas progenitors. , 2020, , 347-357.		0
103	Letter to the editor: Serum thrombospondinâ€2 as biomarker in liver diseases, a look beyond NASH. Hepatology, 2022, 75, 1056-1057.	7.3	0
104	Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Delivery and Translational Research, 2022, , 1.	5.8	0