
Ridha Mosrati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1710481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of growth conditions for the biosynthesis of medium-chain length polyhydroxyalkanoates from Bacillus megaterium DSM 509: experimental analysis, statistical modelling, and characterization. Biomass Conversion and Biorefinery, 2023, 13, 12249-12264.	2.9	2
2	New model development for qualitative and quantitative analysis of microbial polyhydroxyalkanoates: A comparison of Fourier Transform Infrared Spectroscopy with Gas Chromatography. Journal of Biotechnology, 2021, 329, 38-48.	1.9	6
3	Dissolved oxygen level output feedback control based on discrete-time measurements during a Pseudomonas putida mt-2 fermentation. Journal of Process Control, 2019, 79, 29-40.	1.7	6
4	Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures. International Journal of Biological Macromolecules, 2017, 98, 430-435.	3.6	22
5	Comet assay with gill cells of <i>Mytilus galloprovincialis</i> end point tools for biomonitoring of water antibiotic contamination. Toxicology and Industrial Health, 2016, 32, 686-693.	0.6	2
6	Cytotoxic effect of chlorpyrifos ethyl and its degradation derivatives by Pseudomonas peli strain isolated from the Oued Hamdoun River (Tunisia). Toxicology and Industrial Health, 2016, 32, 707-713.	0.6	6
7	Nonlinear control of dissolved oxygen level for Pseudomonas putida bacterium fermentation. , 2016, ,		2
8	Decolorization does not always mean detoxification: case study of a newly isolated Pseudomonas peli for decolorization of textile wastewater. Environmental Science and Pollution Research, 2013, 20, 5790-5796.	2.7	16
9	Human cell death in relation to DNA damage after exposure to the untreated and biologically treated pharmaceutical wastewater. Environmental Science and Pollution Research, 2013, 20, 3836-3842.	2.7	4
10	Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: Evidence of an atypical metabolism inÂBacillus megaterium DSM 509. Journal of Bioscience and Bioengineering, 2013, 116, 302-308.	1.1	57
11	Inhibition of seed germination and seedling growth of Triticum aestivum L. by industrial wastewaters. International Journal of Environmental Technology and Management, 2013, 16, 244.	0.1	1
12	Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation. Environmental Science and Pollution Research, 2012, 19, 2634-2643.	2.7	64
13	Bioremediation of industrial pharmaceutical drugs. Drug and Chemical Toxicology, 2012, 35, 235-240.	1.2	19
14	Treatment of Olive Mill Wastewaters by Pseudomonas putida mt-2: Toxicity Assessment of Untreated and Treated Effluent. Environmental Engineering Science, 2011, 28, 835-841.	0.8	4
15	Decolorization of Textile Wastewater byPseudomonas putida: Toxicity Assessment. Environmental Engineering Science, 2011, 28, 489-495.	0.8	20
16	Degradation and detoxification of acid orange 52 by Pseudomonas putida mt-2: a laboratory study. Environmental Science and Pollution Research, 2011, 18, 1527-1535.	2.7	13
17	Acid violet 7 and its biodegradation products induce chromosome aberrations, lipid peroxidation, and cholinesterase inhibition in mouse bone marrow. Environmental Science and Pollution Research, 2010, 17, 1371-1378.	2.7	57
18	Mutagenicity and genotoxicity of acid yellow 17 and its biodegradation products. Drug and Chemical Toxicology, 2009, 32, 222-229.	1.2	18

RIDHA MOSRATI

#	Article	IF	CITATIONS
19	Genotoxic and antibutyrylcholinesterasic activities of acid violet 7 and its biodegradation products. Drug and Chemical Toxicology, 2009, 32, 230-237.	1.2	15
20	Influence of the chemical structure on the biodegradability of acids yellow 17, violet 7 and orange 52 byPseudomonas putida. Annals of Microbiology, 2009, 59, 9-15.	1.1	9
21	In vitro study of DNA damage induced by acid orange 52 and its biodegradation derivatives. Environmental Toxicology and Chemistry, 2009, 28, 489-495.	2.2	37
22	In vitro mutagenicity of Acid Violet 7 and its degradation products by Pseudomonas putida mt-2: Correlation with chemical structures. Environmental Toxicology and Pharmacology, 2009, 27, 231-236.	2.0	39
23	Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Archives of Microbiology, 2008, 190, 141-150.	1.0	24
24	Comparative Study of <i>Cyperus rotundus</i> Essential Oil by a Modified GC/MS Analysis Method. Evaluation of Its Antioxidant, Cytotoxic, and Apoptotic Effects. Chemistry and Biodiversity, 2008, 5, 729-742.	1.0	80
25	Effects of Mg ²⁺ , Ca ²⁺ AND SO ₄ ²⁻ ions on the precipitation kinetics and microstructure of aragonite. Annales De Chimie: Science Des Materiaux, 2008, 33, 123-134.	0.2	12
26	Acclimated Biomass That Degrades Sulfonated Naphthalene Formaldehyde Condensate. Pakistan Journal of Biological Sciences, 2008, 11, 1588-1593.	0.2	4
27	Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: Acids yellow 17, violet 7 and orange 52, and of their degradation products by Pseudomonas putida mt-2. Food and Chemical Toxicology, 2007, 45, 1670-1677.	1.8	121
28	Preliminary assessment of Penicillium occitanis cellulase: A further useful system. Enzyme and Microbial Technology, 1994, 16, 538-542.	1.6	20
29	Variation and modeling of the probability of plasmid loss as a function of growth rate of plasmid-bearing cells ofEscherichia coli during continuous cultures. Biotechnology and Bioengineering, 1993, 41, 395-404.	1.7	42
30	Modelling of batch fermentation of a recombinant Escherichia coli producing glyceraldehyde-3-phosphate dehydrogenase on a complex selective medium. The Chemical Engineering Journal, 1993, 52, B35-B48.	0.4	14
31	Study of population dynamic for a recombinant bacterium during continuous cultures: Appliction of data filtering and smoothing. Biotechnology and Bioengineering, 1992, 39, 398-407.	1.7	29
32	Les colorants textiles sources de contamination de l'eauÂ: CRIBLAGE de la toxicité et des méthodes de traitement. Revue Des Sciences De L'Eau, 0, 24, 209-238.	0.2	33