Oliver D Hantschel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1710400/oliver-d-hantschel-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80	5,378 citations	32	73
papers		h-index	g-index
93	6,059 ext. citations	10 .2	5.38
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
80	Tuning SAS-6 architecture with monobodies impairs distinct steps of centriole assembly. <i>Nature Communications</i> , 2021 , 12, 3805	17.4	2
79	Crizotinib acts as ABL1 inhibitor combining ATP-binding with allosteric inhibition and is active against native BCR-ABL1 and its resistance and compound mutants BCR-ABL1 and BCR-ABL1. <i>Annals of Hematology</i> , 2021 , 100, 2023-2029	3	1
78	Precision Medicine in Hematology 2021: Definitions, Tools, Perspectives, and Open Questions. HemaSphere, 2021 , 5, e536	0.3	5
77	BTK operates a phospho-tyrosine switch to regulate NLRP3 inflammasome activity. <i>Journal of Experimental Medicine</i> , 2021 , 218,	16.6	9
76	CDK6 degradation hits Ph+ ALL hard. <i>Blood</i> , 2020 , 135, 1512-1514	2.2	
75	Btk SH2-kinase interface is critical for allosteric kinase activation and its targeting inhibits B-cell neoplasms. <i>Nature Communications</i> , 2020 , 11, 2319	17.4	12
74	Monobodies as enabling tools for structural and mechanistic biology. <i>Current Opinion in Structural Biology</i> , 2020 , 60, 167-174	8.1	15
73	Selective inhibition of STAT3 signaling using monobodies targeting the coiled-coil and N-terminal domains. <i>Nature Communications</i> , 2020 , 11, 4115	17.4	16
72	ECatenin-Dependent Signals Maintain BCR-ABL1 B Cell Acute Lymphoblastic Leukemia. <i>Cancer Cell</i> , 2019 , 35, 649-663.e10	24.3	14
71	Targeted Protein Degradation through Cytosolic Delivery of Monobody Binders Using Bacterial Toxins. <i>ACS Chemical Biology</i> , 2019 , 14, 916-924	4.9	16
70	The phosphatase UBASH3B/Sts-1 is a negative regulator of Bcr-Abl kinase activity and leukemogenesis. <i>Leukemia</i> , 2019 , 33, 2319-2323	10.7	8
69	Rapid Screen for Tyrosine Kinase Inhibitor Resistance Mutations and Substrate Specificity. <i>ACS Chemical Biology</i> , 2019 , 14, 1888-1895	4.9	3
68	Chronic myeloid leukemia <i>HemaSphere</i> , 2019 , 3, 47	0.3	1
67	BioSITe: A Method for Direct Detection and Quantitation of Site-Specific Biotinylation. <i>Journal of Proteome Research</i> , 2018 , 17, 759-769	5.6	46
66	ATP Site Ligands Determine the Assembly State of the Abelson Kinase Regulatory Core via the Activation Loop Conformation. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1863-1869	16.4	16
65	BCR-ABL1 compound mutants display differential and dose-dependent responses to ponatinib. Haematologica, 2018 , 103, e10-e12	6.6	14
64	Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics. <i>Leukemia</i> , 2017 , 31, 1502-1512	10.7	53

(2015-2017)

63	NDEL1-PDGFRB fusion gene in a myeloid malignancy with eosinophilia associated with resistance to tyrosine kinase inhibitors. <i>Leukemia</i> , 2017 , 31, 237-240	10.7	10
62	Kinase-templated abiotic reaction. <i>Chemical Science</i> , 2017 , 8, 5119-5125	9.4	12
61	Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies. <i>Journal of Molecular Biology</i> , 2017 , 429, 1364-1380	6.5	18
60	Alkaline phosphatase-fused repebody as a new format of immuno-reagent for an immunoassay. <i>Analytica Chimica Acta</i> , 2017 , 950, 184-191	6.6	11
59	Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions. <i>Nucleic Acids Research</i> , 2017 , 45, 10504-10517	20.1	34
58	Allosterische Kinaseinhibitoren. <i>Onkologe</i> , 2017 , 23, 626-631	0.1	
57	Unpaired Extracellular Cysteine Mutations of CSF3R Mediate Gain or Loss of Function. <i>Cancer Research</i> , 2017 , 77, 4258-4267	10.1	8
56	Structural and functional dissection of the DH and PH domains of oncogenic Bcr-Abl tyrosine kinase. <i>Nature Communications</i> , 2017 , 8, 2101	17.4	21
55	Monobodies as possible next-generation protein therapeutics - a perspective. <i>Swiss Medical Weekly</i> , 2017 , 147, w14545	3.1	6
54	Identification and Characterization of Tyrosine Kinase Nonreceptor 2 Mutations in Leukemia through Integration of Kinase Inhibitor Screening and Genomic Analysis. <i>Cancer Research</i> , 2016 , 76, 12	7-38 ^{.1}	25
53	Comprehensive Analysis of the Structural, Biochemical and Signaling Differences of the p210 and p185 Isoforms of Bcr-Abl in CML and B-ALL. <i>Blood</i> , 2016 , 128, 4238-4238	2.2	
52	2016 International Symposium on Chemical Biology of the NCCR Chemical Biology Campus Biotech, Geneva 13-15.1.2016. <i>Chimia</i> , 2016 , 70, 215-9	1.3	
51	Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface. <i>Journal of Biological Chemistry</i> , 2016 , 291, 8836-47	5.4	23
50	Normal ABL1 is a tumor suppressor and therapeutic target in human and mouse leukemias expressing oncogenic ABL1 kinases. <i>Blood</i> , 2016 , 127, 2131-43	2.2	18
49	HRD Motif as the Central Hub of the Signaling Network for Activation Loop Autophosphorylation in Abl Kinase. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 5563-5574	6.4	16
48	Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity. <i>Biochemical Journal</i> , 2015 , 468, 283-91	3.8	19
47	Targeting BCR-ABL and JAK2 in Ph+ ALL. <i>Blood</i> , 2015 , 125, 1362-3	2.2	1
46	Kinase Regulation in Mycobacterium tuberculosis: Variations on a Theme. <i>Structure</i> , 2015 , 23, 975-6	5.2	2

45	Unexpected off-targets and paradoxical pathway activation by kinase inhibitors. <i>ACS Chemical Biology</i> , 2015 , 10, 234-45	4.9	27
44	c-Abl phosphorylates Esynuclein and regulates its degradation: implication for Esynuclein clearance and contribution to the pathogenesis of Parkinson's disease. <i>Human Molecular Genetics</i> , 2014 , 23, 2858-79	5.6	126
43	The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility. <i>Nature Communications</i> , 2014 , 5, 5470	17.4	28
42	C-Abl Phosphorylates Alpha-synuclein And Regulates Its Degradation, Implication For Alpha-synuclein Clearance And Contribution To The Pathogenesis Of Parkinson& Disease 2014 ,		2
41	NUP214-ABL1-mediated cell proliferation in T-cell acute lymphoblastic leukemia is dependent on the LCK kinase and various interacting proteins. <i>Haematologica</i> , 2014 , 99, 85-93	6.6	34
40	Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348). <i>Leukemia</i> , 2014 , 28, 404-7	10.7	80
39	A Novel Fusion Gene NDEL1-Pdgfrb in a Patient with JMML with a New Variant of TKI-Resistant Mutation in the Kinase Domain of PDGFR[]Blood, 2014 , 124, 613-613	2.2	4
38	The SH2 Domain of BCR-ABL1 Regulates Kinase Autophosphorylation By Controlling Activation Loop Accessibility. <i>Blood</i> , 2014 , 124, 2209-2209	2.2	
37	Mechanisms of resistance to BCR-ABL and other kinase inhibitors. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2013 , 1834, 1449-59	4	45
36	Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 14924-9	11.5	62
35	Nilotinib as frontline and second-line therapy in chronic myeloid leukemia: open questions. <i>Critical Reviews in Oncology/Hematology</i> , 2012 , 82, 370-7	7	5
34	BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. <i>Nature Chemical Biology</i> , 2012 , 8, 285-93	11.7	135
33	The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. <i>Cancer Research</i> , 2012 , 72, 4890-5	10.1	62
32	Mig6 is a sensor of EGF receptor inactivation that directly activates c-Abl to induce apoptosis during epithelial homeostasis. <i>Developmental Cell</i> , 2012 , 23, 547-59	10.2	38
31	Structure, regulation, signaling, and targeting of abl kinases in cancer. <i>Genes and Cancer</i> , 2012 , 3, 436-4	16 2.9	86
30	Cell biology: a key driver of therapeutic innovation. <i>Journal of Cell Biology</i> , 2012 , 199, 571-5	7.3	1
29	Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. <i>Cell</i> , 2011 , 147, 306-19	56.2	102
28	A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. <i>Nature Structural and Molecular Biology</i> , 2010 , 17, 519-27	17.6	120

(2006-2010)

27	A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells. <i>Leukemia</i> , 2010 , 24, 44-50	10.7	58
26	BCR-ABL SH3-SH2 domain mutations in chronic myeloid leukemia patients on imatinib. <i>Blood</i> , 2010 , 116, 3278-85	2.2	65
25	Bcr-Abl Directly Activates Stat5 Independent of Jak2. <i>Blood</i> , 2010 , 116, 511-511	2.2	
24	Charting the molecular network of the drug target Bcr-Abl. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7414-9	11.5	130
23	The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). <i>BMC Structural Biology</i> , 2009 , 9, 7	2.7	67
22	Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. <i>Leukemia</i> , 2009 , 23, 477-85	10.7	216
21	The Bcr-Abl SH2-Kinase Domain Interface Is Critical for Leukemogenesis and An Additional Therapeutic Target in CML <i>Blood</i> , 2009 , 114, 37-37	2.2	O
20	The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. <i>EMBO Journal</i> , 2008 , 27, 2135-46	13	210
19	Intrinsic differences between the catalytic properties of the oncogenic NUP214-ABL1 and BCR-ABL1 fusion protein kinases. <i>Leukemia</i> , 2008 , 22, 2208-16	10.7	39
18	Characterization of BCR-ABL deletion mutants from patients with chronic myeloid leukemia. <i>Leukemia</i> , 2008 , 22, 1184-90	10.7	33
17	The chemokine interleukin-8 and the surface activation protein CD69 are markers for Bcr-Abl activity in chronic myeloid leukemia. <i>Molecular Oncology</i> , 2008 , 2, 272-81	7.9	25
16	Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. <i>Leukemia and Lymphoma</i> , 2008 , 49, 615-9	1.9	199
15	Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. <i>Cell</i> , 2008 , 134, 793-803	56.2	171
14	Structural Positioning of the SH2 Domain Is Critical for Bcr-Abl Kinase Activity, Signal Transduction and Oncogenic Transformation. <i>Blood</i> , 2008 , 112, 569-569	2.2	
13	The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 13283-8	11.5	242
12	Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. <i>Blood</i> , 2007 , 110, 4055-63	2.2	538
11	Characterization of BCR-ABL Deletion Mutants from Patients with Chronic Myeloid Leukemia <i>Blood</i> , 2007 , 110, 2936-2936	2.2	
10	Mechanisms of Activation of Abl Family Kinases 2006 , 1-10		

9	Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. <i>Molecular Cell</i> , 2006 , 21, 787-98	17.6	174
8	An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. <i>Nature Methods</i> , 2006 , 3, 1013-9	21.6	326
7	A Subset of Chronic Myeloid Leukemia (CML) Patients on ABL Kinase Inhibitor Therapy Develop Point Mutations outside the BCR-ABL Kinase Domain That Decrease Drug Sensitivity and May Have a Role in Disease Progression <i>Blood</i> , 2006 , 108, 2188-2188	2.2	
6	Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. <i>Molecular Cell</i> , 2005 , 19, 461-73	17.6	57
5	NMR Assignment Reveals an alpha-Helical Fold for the F-Actin Binding Domain of Human Bcr-Abl/c-Abl. <i>Journal of Biomolecular NMR</i> , 2005 , 32, 335	3	3
4	The central domain of the matrix protein of HIV-1: influence on protein structure and virus infectivity. <i>Biological Chemistry</i> , 2004 , 385, 303-13	4.5	3
3	Regulation of the c-Abl and Bcr-Abl tyrosine kinases. <i>Nature Reviews Molecular Cell Biology</i> , 2004 , 5, 33	- 44 8.7	380
2	A myristoyl/phosphotyrosine switch regulates c-Abl. <i>Cell</i> , 2003 , 112, 845-57	56.2	332
1	Structural basis for the autoinhibition of c-Abl tyrosine kinase. <i>Cell</i> , 2003 , 112, 859-71	56.2	661