
Salvatore Nesci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1710361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxicity of organotin compounds: Shared and unshared biochemical targets and mechanisms in animal cells. Toxicology in Vitro, 2013, 27, 978-990.	2.4	54
2	Sperm function and mitochondrial activity: An insight on boar sperm metabolism. Theriogenology, 2020, 144, 82-88.	2.1	40
3	The mitochondrial permeability transition pore in cell death: A promising drug binding bioarchitecture. Medicinal Research Reviews, 2020, 40, 811-817.	10.5	34
4	Tributyltin (TBT) and dibutyltin (DBT) differently inhibit the mitochondrial Mg-ATPase activity in mussel digestive gland. Toxicology in Vitro, 2011, 25, 117-124.	2.4	33
5	Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life, 2021, 11, 242.	2.4	32
6	Mercury and protein thiols: Stimulation of mitochondrial F1FO-ATPase and inhibition of respiration. Chemico-Biological Interactions, 2016, 260, 42-49.	4.0	31
7	A Therapeutic Role for the F1FO-ATP Synthase. SLAS Discovery, 2019, 24, 893-903.	2.7	30
8	The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives. Journal of Membrane Biology, 2016, 249, 11-21.	2.1	28
9	Tributyltin (TBT) and mitochondrial respiration in mussel digestive gland. Toxicology in Vitro, 2011, 25, 951-959.	2.4	27
10	Opposite Rotation Directions in the Synthesis and Hydrolysis of ATP by the ATP Synthase: Hints from a Subunit Asymmetry. Journal of Membrane Biology, 2015, 248, 163-169.	2.1	27
11	Kinetic properties of the mitochondrial F 1 F O -ATPase activity elicited by Ca 2+ in replacement of Mg 2+. Biochimie, 2017, 140, 73-81.	2.6	27
12	Tributyltin (TBT) inhibition of oligomycin-sensitive Mg-ATPase activity in mussel mitochondria. Toxicology in Vitro, 2008, 22, 827-836.	2.4	26
13	The mitochondrial F1FO-ATPase desensitization to oligomycin by tributyltin is due to thiol oxidation. Biochimie, 2014, 97, 128-137.	2.6	25
14	From the Ca 2+ -activated F 1 F O -ATPase to the mitochondrial permeability transition pore: an overview. Biochimie, 2018, 152, 85-93.	2.6	25
15	Modifiers of the oligomycin sensitivity of the mitochondrial F1FO-ATPase. Mitochondrion, 2013, 13, 312-319.	3.4	23
16	Mitochondrial Ca ²⁺ â€activated F ₁ F _O â€ATPase hydrolyzes ATP and promotes the permeability transition pore. Annals of the New York Academy of Sciences, 2019, 1457, 142-157.	3.8	23
17	Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded F _O structure. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 309-321.	5.2	23
18	Multi-site TBT binding skews the inhibition of oligomycin on the mitochondrial Mg–ATPase in Mytilus galloprovincialis. Biochimie, 2011, 93, 1157-1164.	2.6	22

SALVATORE NESCI

#	Article	IF	CITATIONS
19	Novel Drugs Targeting the c-Ring of the F ₁ F _O -ATP Synthase. Mini-Reviews in Medicinal Chemistry, 2016, 16, 815-824.	2.4	21
20	Mussel and mammalian ATP synthase share the same bioenergetic cost of ATP. Journal of Bioenergetics and Biomembranes, 2013, 45, 289-300.	2.3	20
21	Nicotinamide Nucleotide Transhydrogenase as a Sensor of Mitochondrial Biology. Trends in Cell Biology, 2020, 30, 1-3.	7.9	20
22	Thiol oxidation is crucial in the desensitization of the mitochondrial F1FO-ATPase to oligomycin and other macrolide antibiotics. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1882-1891.	2.4	19
23	Thiol oxidation of mitochondrial FO-c subunits: A way to switch off antimicrobial drug targets of the mitochondrial ATP synthase. Medical Hypotheses, 2014, 83, 160-165.	1.5	19
24	Tributyltin inhibits the oligomycin-sensitive Mg-ATPase activity in Mytilus galloprovincialis digestive gland mitochondria. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011, 153, 75-81.	2.6	18
25	Triâ€ <i>n</i> â€butyltin binding to a lowâ€affinity site decreases the F ₁ F _O â€ATPase sensitivity to oligomycin in mussel mitochondria. Applied Organometallic Chemistry, 2012, 26, 593-599.	3.5	18
26	Post-translational modifications of the mitochondrial F 1 F O -ATPase. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2902-2912.	2.4	18
27	1,5â€Disubstitutedâ€1,2,3â€triazoles as inhibitors of the mitochondrial Ca ²⁺ â€activated F ₁ F _O â€ATP(hydrol)ase and the permeability transition pore. Annals of the New York Academy of Sciences, 2021, 1485, 43-55.	3.8	18
28	Structural and functional changes in gill mitochondrial membranes from the Mediterranean mussel <i>Mytilus galloprovincialis</i> exposed to triâ€ <i>n</i> â€butyltin. Environmental Toxicology and Chemistry, 2012, 31, 877-884.	4.3	17
29	Preferential nitrite inhibition of the mitochondrial F1FO-ATPase activities when activated by Ca2+ in replacement of the natural cofactor Mg2+. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 345-353.	2.4	17
30	Dietary Enhancement of Selected Fatty Acid Biosynthesis in the Digestive Gland of Mytilus galloprovincialis Lmk Journal of Agricultural and Food Chemistry, 2013, 61, 973-981.	5.2	16
31	Mitochondrial permeability transition, F ₁ <scp>F_O</scp> â€ <scp>ATP</scp> ase and calcium: an enigmatic triangle. EMBO Reports, 2017, 18, 1265-1267.	4.5	16
32	Phenylglyoxal inhibition of the mitochondrial F1FO-ATPase activated by Mg2+ or by Ca2+ provides clues on the mitochondrial permeability transition pore. Archives of Biochemistry and Biophysics, 2020, 681, 108258.	3.0	16
33	Sulfide affects the mitochondrial respiration, the Ca2+-activated F1FO-ATPase activity and the permeability transition pore but does not change the Mg2+-activated F1FO-ATPase activity in swine heart mitochondria. Pharmacological Research, 2021, 166, 105495.	7.1	15
34	The mitochondrial energy conversion involves cytochrome c diffusion into the respiratory supercomplexes. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148394.	1.0	15
35	A Lethal Channel between the ATP Synthase Monomers. Trends in Biochemical Sciences, 2018, 43, 311-313.	7.5	14
36	Emerging Roles for the Mitochondrial ATP Synthase Supercomplexes. Trends in Biochemical Sciences, 2019, 44, 821-823.	7.5	14

3

SALVATORE NESCI

#	Article	IF	CITATIONS
37	Relationship between serum concentration, functional parameters and cell bioenergetics in IPEC-J2 cell line. Histochemistry and Cell Biology, 2021, 156, 59-67.	1.7	14
38	Tributyltin-driven enhancement of the DCCD insensitive Mg-ATPase activity in mussel digestive gland mitochondria. Biochimie, 2012, 94, 727-733.	2.6	13
39	Incoming news on the F-type ATPase structure and functions in mammalian mitochondria. BBA Advances, 2021, 1, 100001.	1.6	11
40	From the Structural and (Dys)Function of ATP Synthase to Deficiency in Age-Related Diseases. Life, 2022, 12, 401.	2.4	11
41	Modulation of the F ₁ F _O â€ATPase function by butyltin compounds. Applied Organometallic Chemistry, 2013, 27, 199-205.	3.5	9
42	Glucose and glutamine in the mitochondrial oxidative metabolism of stem cells. Mitochondrion, 2017, 35, 11-12.	3.4	9
43	Mitochondria Bioenergetic Functions and Cell Metabolism Are Modulated by the Bergamot Polyphenolic Fraction. Cells, 2022, 11, 1401.	4.1	9
44	Lipid-protein interactions in mitochondrial membranes from bivalve mollusks: molecular strategies in different species. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 227, 12-20.	1.6	7
45	Ca ²⁺ as cofactor of the mitochondrial H ⁺ â€translocating <scp>F₁F_Oâ€ATP</scp> (hydrol)ase. Proteins: Structure, Function and Bioinformatics, 2021, 89, 477-482.	2.6	7
46	Biological characteristics and metabolic profile of canine mesenchymal stem cells isolated from adipose tissue and umbilical cord matrix. PLoS ONE, 2021, 16, e0247567.	2.5	7
47	The mitochondrial F1FO-ATPase exploits the dithiol redox state to modulate the permeability transition pore. Archives of Biochemistry and Biophysics, 2021, 712, 109027.	3.0	7
48	What happens when the mitochondrial H+-translocating F1FO-ATP(hydrol)ase becomes a molecular target of calcium? The pore opens. Biochimie, 2022, 198, 92-95.	2.6	7
49	A preliminary study on a novel sea water disinfection process by a peroxy-acid compound to complement and improve the microbial depuration of clams (Ruditapes philippinarum). Food Control, 2017, 80, 226-235.	5.5	6
50	SARSâ€CoVâ€2 first contact: Spike–ACE2 interactions in COVIDâ€19. Chemical Biology and Drug Design, 2021 98, 207-211.	'3.2	6
51	The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase. Medical Hypotheses, 2015, 84, 53-57.	1.5	5
52	Characterization of metabolic profiles and lipopolysaccharide effects on porcine vascular wall mesenchymal stem cells. Journal of Cellular Physiology, 2019, 234, 16685-16691.	4.1	5
53	Vitamin K Vitamers Differently Affect Energy Metabolism in IPEC-J2 Cells. Frontiers in Molecular Biosciences, 2021, 8, 682191.	3.5	5
54	The inhibition of gadolinium ion (Gd3+) on the mitochondrial F1FO-ATPase is linked to the modulation of the mitochondrial permeability transition pore. International Journal of Biological Macromolecules, 2021, 184, 250-258.	7.5	5

SALVATORE NESCI

#	Article	IF	CITATIONS
55	Protein folding and unfolding: proline <i>cis</i> â€ <i>trans</i> isomerization at the <i>c</i> subunits of <scp>F₁F_Oâ€ATPase</scp> might open a high conductance ion channel. Proteins: Structure, Function and Bioinformatics, 2022, 90, 2001-2005.	2.6	5
56	New insight in a new entity: the mitochondrial permeability transition pore arises from the Ca2+-activated F1FO-ATPases. Science Bulletin, 2018, 63, 143-145.	9.0	4
57	Crucial aminoacids in the FO sector of the F1FO-ATP synthase address H+ across the inner mitochondrial membrane: molecular implications in mitochondrial dysfunctions. Amino Acids, 2019, 51, 579-587.	2.7	4
58	Mitochondrial F1FO-ATPase and permeability transition pore response to sulfide in the midgut gland of Mytilus galloprovincialis. Biochimie, 2021, 180, 222-228.	2.6	4
59	Enjoy your journey: the bergamot polyphenols from the tree to the cell metabolism. Journal of Translational Medicine, 2021, 19, 457.	4.4	4
60	Use of specific mitochondrial complex inhibitors to investigate mitochondrial involvement on horse sperm motility and ROS production. Research in Veterinary Science, 2022, 147, 12-19.	1.9	4
61	Long-chain PUFA enrichment in microalgae and metabolic dynamics inTapes philippinarumlarvae. Aquaculture Nutrition, 2016, 22, 643-651.	2.7	2
62	The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD+. Biological Chemistry, 2018, 399, 197-202.	2.5	2
63	Effects of Hydrogen Sulfide Donor NaHS on Porcine Vascular Wall-Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2020, 21, 5267.	4.1	2
64	The ATP synthase glycine zipper of the c subunits: From the structural to the functional role in mitochondrial biology of cardiovascular diseases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119075.	4.1	2
65	Organotin Effects in Different Phyla: Discrepancies and Similarities. , 2012, , 174-196.		2
66	Thiol-Related Regulation of the Mitochondrial F1FO-ATPase Activity. , 2016, , 441-458.		1
67	Lipid unsaturation per se does not explain the physical state of mitochondrial membranes in Mytilus galloprovincialis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 191, 66-75.	1.6	1
68	Season and Cooking May Alter Fatty Acids Profile of Polar Lipids from Blueâ€Back Fish. Lipids, 2019, 54, 741-753.	1.7	1
69	Impaired Mitochondrial Bioenergetics under Pathological Conditions. Life, 2022, 12, 205.	2.4	1
70	Cellular metabolism therapy. Journal of Translational Medicine, 2022, 20, .	4.4	1