
Grzegorz Åabuz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1710010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Refractive Outcomes after Cataract Surgery. Diagnostics, 2022, 12, 243.	2.6	15
2	Semi-Automated Quantification of Retinal and Choroidal Biomarkers in Retinal Vascular Diseases: Agreement of Spectral-Domain Optical Coherence Tomography with and without Enhanced Depth Imaging Mode. Diagnostics, 2022, 12, 333.	2.6	7
3	Infrared- and white-light retinal sensitivity in glaucomatous neuropathy. Scientific Reports, 2022, 12, 1961.	3.3	6
4	Presbyopia correction after previous Intracor treatment: Combined implantation of a small-aperture and a non-diffractive extended-depth-of-focus lens. American Journal of Ophthalmology Case Reports, 2022, 25, 101398.	0.7	2
5	Biomarkers to Predict the Success of Treatment with the Intravitreal 0.19 mg Fluocinolone Acetonide Implant in Uveitic Macular Edema. Pharmaceutics, 2022, 14, 688.	4.5	4
6	Two-Photon Vision in Age-Related Macular Degeneration: A Translational Study. Diagnostics, 2022, 12, 760.	2.6	3
7	Quantification of the In Vitro Predisposition to Glistening Formation in One Manufacturer's Acrylic Intraocular Lenses Made in Different Decades. Ophthalmology and Therapy, 2021, 10, 165-174.	2.3	18
8	Progressive-toric IOL design reduces residual astigmatism with increasing pupil size: a ray-tracing simulation based on corneal topography data. Biomedical Optics Express, 2021, 12, 1568.	2.9	4
9	Reasons for explantation of phakic intraocular lenses and associated perioperative complications: cross-sectional explant registry analysis. BMC Ophthalmology, 2021, 21, 80.	1.4	11
10	Laboratory evaluation of higher-order aberrations and light scattering in explanted opacified intraocular lenses. Eye and Vision (London, England), 2021, 8, 14.	3.0	4
11	Central and mid-peripheral corneal astigmatism in an elderly population: a retrospective analysis of Scheimpflug topography results. Scientific Reports, 2021, 11, 7968.	3.3	6
12	Laboratory analysis and ray visualization of diffractive optics with enhanced intermediate vision. BMC Ophthalmology, 2021, 21, 197.	1.4	5
13	A Novel Approach for Assessing Visual Impairment Caused by Intraocular Lens Opacification: High-Resolution Optical Coherence Tomography. American Journal of Ophthalmology, 2021, 226, 108-116.	3.3	9
14	Unilateral implantation of a new non-diffractive extended range-of-vision IOL in a young patient with Curschmann-Steinert myotonic dystrophy. American Journal of Ophthalmology Case Reports, 2021, 22, 101109.	0.7	11
15	Visualization of Forward Light Scatter in Opacified Intraocular Lenses and Straylight Assessment. Diagnostics, 2021, 11, 1512.	2.6	5
16	Optical function of intraocular lenses in different opacification patterns: metrology analysis of 67 explants. Journal of Cataract and Refractive Surgery, 2021, 47, 1210-1217.	1.5	4
17	Laboratory Investigation of Preclinical Visual-Quality Metrics and Halo-Size in Enhanced Monofocal Intraocular Lenses. Ophthalmology and Therapy, 2021, 10, 1093-1104.	2.3	27
18	THE LOSS OF INFRARED LIGHT SENSITIVITY OF PHOTORECEPTOR CELLS MEASURED WITH TWO-PHOTON EXCITATION AS AN INDICATOR OF DIABETIC RETINOPATHY. Retina, 2021, 41, 1302-1308.	1.7	9

Grzegorz Åabuz

#	Article	IF	CITATIONS
19	Clinical Application of Infrared-Light Microperimetry in the Assessment of Scotopic-Eye Sensitivity. Translational Vision Science and Technology, 2020, 9, 7.	2.2	9
20	Reply to Comment on: The Effect of a Spectral Filter on Visual Quality in Patients with an Extended-Depth-of-Focus Intraocular Lens. American Journal of Ophthalmology, 2020, 213, 322.	3.3	3
21	The Effect of a Spectral Filter on Visual Quality in Patients with an Extended-Depth-Of-Focus Intraocular Lens. American Journal of Ophthalmology, 2019, 208, 56-63.	3.3	23
22	The impact of glistenings on the optical quality of a hydrophobic acrylic intraocular lens. Journal of Cataract and Refractive Surgery, 2019, 45, 1020-1025.	1.5	41
23	Glistening Formation and Light Scattering in Six Hydrophobic-Acrylic Intraocular Lenses. American Journal of Ophthalmology, 2018, 196, 112-120.	3.3	54
24	Assessment of straylight and the modulation transfer function of intraocular lenses with centrally localized opacification associated with the intraocular injection of gas. Journal of Cataract and Refractive Surgery, 2018, 44, 615-622.	1.5	33
25	Material Analysis and Optical Quality Assessment of Opacified Hydrophilic Acrylic Intraocular Lenses After Pars Plana Vitrectomy. American Journal of Ophthalmology, 2018, 193, 10-19.	3.3	48
26	Longitudinal Chromatic Aberration and Polychromatic Image Quality Metrics of Intraocular Lenses. Journal of Refractive Surgery, 2018, 34, 832-838.	2.3	29
27	Ocular Straylight with Different Multifocal Contact Lenses. Optometry and Vision Science, 2017, 94, 496-504.	1.2	8
28	Straylight from glistenings in intraocular lenses: In vitro study. Journal of Cataract and Refractive Surgery, 2017, 43, 102-108.	1.5	36
29	Light scattering levels from intraocular lenses extracted from donor eyes. Journal of Cataract and Refractive Surgery, 2017, 43, 1207-1212.	1.5	12
30	Comparison of ocular straylight after implantation of multifocal intraocular lenses. Journal of Cataract and Refractive Surgery, 2016, 42, 618-625.	1.5	21
31	Method for in vitro assessment of straylight from intraocular lenses. Biomedical Optics Express, 2015, 6, 4457.	2.9	21
32	Ocular straylight in the normal pseudophakic eye. Journal of Cataract and Refractive Surgery, 2015, 41, 1406-1415.	1.5	24