Seon-Jin Choi

List of Publications by Citations

Source: https://exaly.com/author-pdf/1709104/seon-jin-choi-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

89 4,956 41 70 g-index

98 5,839 9.5 6.06 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
89	Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO(2) nanofibers functionalized with reduced graphene oxide nanosheets. <i>ACS Applied Materials & Diagram (Materials & Diagram)</i>	9.5	284
88	Thin-Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes. <i>Advanced Functional Materials</i> , 2013 , 23, 2357-2367	15.6	276
87	Heterogeneous Sensitization of Metal-Organic Framework Driven Metal@Metal Oxide Complex Catalysts on an Oxide Nanofiber Scaffold Toward Superior Gas Sensors. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13431-13437	16.4	268
86	Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. <i>Analytical Chemistry</i> , 2013 , 85, 1792-6	7.8	236
85	Nanoscale PdO Catalyst Functionalized CoO Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. <i>ACS Applied Materials & Detection & Detect</i>	1 ² 8 ⁵ 210) ¹⁸ 2
84	Mesoporous WO3 Nanofibers with Protein-Templated Nanoscale Catalysts for Detection of Trace Biomarkers in Exhaled Breath. <i>ACS Nano</i> , 2016 , 10, 5891-9	16.7	173
83	Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. <i>Sensors and Actuators B: Chemical</i> , 2014 , 193, 574-581	8.5	169
82	Innovative Nanosensor for Disease Diagnosis. Accounts of Chemical Research, 2017, 50, 1587-1596	24.3	143
81	Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. <i>ACS Applied Materials & Diseases</i> , 2014, 6, 9061-70	9.5	141
80	Metal-Organic Framework Templated Catalysts: Dual Sensitization of PdO-ZnO Composite on Hollow SnO Nanotubes for Selective Acetone Sensors. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2017 , 9, 18069-18077	9.5	127
79	Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. <i>Electronic Materials Letters</i> , 2018 , 14, 221-260	2.9	120
78	Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. <i>Nanoscale</i> , 2016 , 8, 9159-66	7.7	120
77	Thin-walled SnOIhanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules. <i>Nanoscale</i> , 2015 , 7, 164	17726	116
76	Rational Design of Highly Porous SnO2 Nanotubes Functionalized with Biomimetic Nanocatalysts for Direct Observation of Simulated Diabetes. <i>Advanced Functional Materials</i> , 2016 , 26, 4740-4748	15.6	115
75	Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11868-11876	16.4	101
74	The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. <i>Sensors and Actuators B: Chemical</i> , 2014 , 197, 300-307	8.5	93
73	2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8725-8732	13	89

(2016-2016)

72	Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by Rh2O3 nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2016 , 224, 185-192	8.5	88
71	Selectivity enhancement of SnO2 nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature. <i>Sensors and Actuators B: Chemical</i> , 2013 , 188, 156-168	8.5	84
70	Exceptional High-Performance of Pt-Based Bimetallic Catalysts for Exclusive Detection of Exhaled Biomarkers. <i>Advanced Materials</i> , 2017 , 29, 1700737	24	84
69	Low-Thermal-Budget Doping: Low-Thermal-Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boron-Doped Reduced Graphene Oxide (Adv. Sci. 7/2020). <i>Advanced Science</i> , 2020 , 7, 2070039	13.6	78
68	Catalyst-decorated hollow WO3 nanotubes using layer-by-layer self-assembly on polymeric nanofiber templates and their application in exhaled breath sensor. <i>Sensors and Actuators B: Chemical</i> , 2016 , 223, 301-310	8.5	78
67	Metal-Organic Framework Templated Synthesis of Ultrasmall Catalyst Loaded ZnO/ZnCoO Hollow Spheres for Enhanced Gas Sensing Properties. <i>Scientific Reports</i> , 2017 , 7, 45074	4.9	74
66	Nitrogen-Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor. <i>Small</i> , 2018 , 14, e1703934	11	72
65	Highly efficient electronic sensitization of non-oxidized graphene flakes on controlled pore-loaded WO3 nanofibers for selective detection of H2S molecules. <i>Scientific Reports</i> , 2015 , 5, 8067	4.9	65
64	Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. <i>Journal of Electroceramics</i> , 2012 , 29, 106-116	1.5	64
63	Bimodally Porous WO Microbelts Functionalized with Pt Catalysts for Selective HS Sensors. <i>ACS Applied Materials & Applied & Applied Materials & Applied & A</i>	9.5	63
62	Facile Au catalyst loading on the inner shell of hollow SnO2 spheres using Au-decorated block copolymer sphere templates and their selective H2S sensing characteristics. <i>Nanoscale</i> , 2014 , 6, 11898-	973	62
61	WO3 Nanofiber-Based Biomarker Detectors Enabled by Protein-Encapsulated Catalyst Self-Assembled on Polystyrene Colloid Templates. <i>Small</i> , 2016 , 12, 911-20	11	62
60	Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type CoO nanofibers for selective acetone detection. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7160-7167	7.3	61
59	Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. <i>NPG Asia Materials</i> , 2016 , 8, e315-e315	10.3	60
58	Hollow Pd-Ag Composite Nanowires for Fast Responding and Transparent Hydrogen Sensors. <i>ACS Applied Materials & District Materials & Di</i>	9.5	58
57	Few-Layered WS2 Nanoplates Confined in Co, N-Doped Hollow Carbon Nanocages: Abundant WS2 Edges for Highly Sensitive Gas Sensors. <i>Advanced Functional Materials</i> , 2018 , 28, 1802575	15.6	53
56	Silver Nanowire Embedded Colorless Polyimide Heater for Wearable Chemical Sensors: Improved Reversible Reaction Kinetics of Optically Reduced Graphene Oxide. <i>Small</i> , 2016 , 12, 5826-5835	11	52
55	Novel Templating Route Using Pt Infiltrated Block Copolymer Microparticles for Catalytic Pt Functionalized Macroporous WO3 Nanofibers and Its Application in Breath Pattern Recognition. <i>ACS Sensors</i> , 2016 , 1, 1124-1131	9.2	52

54	Catalyst-loaded porous WO3 nanofibers using catalyst-decorated polystyrene colloid templates for detection of biomarker molecules. <i>Chemical Communications</i> , 2015 , 51, 2609-12	5.8	47
53	Metal Chelation Assisted In Situ Migration and Functionalization of Catalysts on Peapod-Like Hollow SnO toward a Superior Chemical Sensor. <i>Small</i> , 2016 , 12, 5989-5997	11	47
52	Applications and Advances in Bioelectronic Noses for Odour Sensing. Sensors, 2018, 18,	3.8	46
51	Electrospun Nanostructures for High Performance Chemiresistive and Optical Sensors. <i>Macromolecular Materials and Engineering</i> , 2017 , 302, 1600569	3.9	43
50	Hierarchically interconnected porosity control of catalyst-loaded WO3 nanofiber scaffold: Superior acetone sensing layers for exhaled breath analysis. <i>Sensors and Actuators B: Chemical</i> , 2018 , 259, 616-62	2 5 °.5	43
49	Wireless Real-Time Temperature Monitoring of Blood Packages: Silver Nanowire-Embedded Flexible Temperature Sensors. <i>ACS Applied Materials & District Materi</i>	9.5	42
48	Facile synthesis of hierarchical porous WO3 nanofibers having 1D nanoneedles and their functionalization with non-oxidized graphene flakes for selective detection of acetone molecules. <i>RSC Advances</i> , 2015 , 5, 7584-7588	3.7	41
47	WO3 nanofibers functionalized by protein-templated RuO2 nanoparticles as highly sensitive exhaled breath gas sensing layers. <i>Sensors and Actuators B: Chemical</i> , 2017 , 241, 1276-1282	8.5	39
46	Metal-Organic Framework-Templated PdO-CoO Nanocubes Functionalized by SWCNTs: Improved NO Reaction Kinetics on Flexible Heating Film. <i>ACS Applied Materials & Description of Supplied Materials & Description of </i>	o c @3	37
45	Facile synthetic method of catalyst-loaded ZnO nanofibers composite sensor arrays using bio-inspired protein cages for pattern recognition of exhaled breath. <i>Sensors and Actuators B: Chemical</i> , 2017 , 243, 166-175	8.5	36
44	Optically Sintered 2D RuO2 Nanosheets: Temperature-Controlled NO2 Reaction. <i>Advanced Functional Materials</i> , 2017 , 27, 1606026	15.6	35
43	Sub-Parts-per-Million Hydrogen Sulfide Colorimetric Sensor: Lead Acetate Anchored Nanofibers toward Halitosis Diagnosis. <i>Analytical Chemistry</i> , 2018 , 90, 8769-8775	7.8	34
42	High throughput ultralong (20 cm) nanowire fabrication using a wafer-scale nanograting template. <i>Nano Letters</i> , 2013 , 13, 3978-84	11.5	33
41	Heterogeneous, Porous 2D Oxide Sheets via Rapid Galvanic Replacement: Toward Superior HCHO Sensing Application. <i>Advanced Functional Materials</i> , 2019 , 29, 1903012	15.6	30
40	Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules. <i>Scientific Reports</i> , 2016 , 6, 18731	4.9	29
39	Bioinspired Cocatalysts Decorated WO Nanotube Toward Unparalleled Hydrogen Sulfide Chemiresistor. <i>ACS Sensors</i> , 2018 , 3, 1164-1173	9.2	28
38	Porosity controlled 3D SnO2 spheres via electrostatic spray: Selective acetone sensors. <i>Sensors and Actuators B: Chemical</i> , 2020 , 304, 127350	8.5	27
37	2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors. Sensors and Actuators B: Chemical, 2021 , 331, 129371	8.5	23

(2018-2018)

36	Switchable Single-Walled Carbon Nanotube-Polymer Composites for CO Sensing. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	23
35	Biocompatible Carbon Nanotube-Based Hybrid Microfiber for Implantable Electrochemical Actuator and Flexible Electronic Applications. <i>ACS Applied Materials & Discrete Amplications</i> , 20615-2015.	20627	22
34	Facile Synthesis of p-type Perovskite SrTi0.65Fe0.35O3[Nanofibers Prepared by Electrospinning and Their Oxygen-Sensing Properties. <i>Macromolecular Materials and Engineering</i> , 2013 , 298, 521-527	3.9	21
33	Precision pH Sensor Based on WO Nanofiber-Polymer Composites and Differential Amplification. <i>ACS Sensors</i> , 2019 , 4, 2593-2598	9.2	20
32	Exhaled Breath Sensors. KAIST Research Series, 2015, 19-49		20
31	Use of a columnar metal thin film as a nanosieve with sub-10 nm pores. <i>Advanced Materials</i> , 2012 , 24, 4408-13	24	19
30	All-carbon fiber-based chemical sensor: Improved reversible NO2 reaction kinetics. <i>Sensors and Actuators B: Chemical</i> , 2019 , 290, 293-301	8.5	18
29	Cu Microbelt Network Embedded in Colorless Polyimide Substrate: Flexible Heater Platform with High Optical Transparency and Superior Mechanical Stability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 39650-39656	9.5	17
28	Heterogeneous Metal Oxide-Graphene Thorn-Bush Single Fiber as a Freestanding Chemiresistor. <i>ACS Applied Materials & District Materials</i>	9.5	17
27	Material-Independent Nanotransfer onto a Flexible Substrate Using Mechanical-Interlocking Structure. <i>ACS Nano</i> , 2018 , 12, 4387-4397	16.7	17
26	Pt nanoparticles functionalized tungsten oxynitride hybrid chemiresistor: Low-temperature NO2 sensing. <i>Sensors and Actuators B: Chemical</i> , 2018 , 273, 1269-1277	8.5	16
25	Porous Ion Exchange Polymer Matrix for Ultrasmall Au Nanoparticle-Decorated Carbon Nanotube Chemiresistors. <i>Chemistry of Materials</i> , 2019 , 31, 5413-5420	9.6	12
24	Functional Single-Walled Carbon Nanotubes for Anion Sensing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 28375-28382	9.5	10
23	Chemiresistors for the Real-Time Wireless Detection of Anions. <i>Advanced Functional Materials</i> , 2020 , 30, 1907087	15.6	10
22	Elaborate Manipulation for Sub-10 nm Hollow Catalyst Sensitized Heterogeneous Oxide Nanofibers for Room Temperature Chemical Sensors. <i>ACS Applied Materials & District Sensors</i> , 2017, 9, 24821-24829	9.5	9
21	Graphene-Based Composite Materials for Chemical Sensor Application. <i>Nanoscience and Technology</i> , 2015 , 65-101	0.6	8
20	Nanomechanical Encoding Method Using Enhanced Thermal Concentration on a Metallic Nanobridge. <i>ACS Nano</i> , 2017 , 11, 7781-7789	16.7	7
19	Abnormal Optoelectric Properties of Two-Dimensional Protonic Ruthenium Oxide with a Hexagonal Structure. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 22661-22668	9.5	6

18	Sensors: Thin-Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes (Adv. Funct. Mater. 19/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 2342-2342	15.6	6
17	. Journal of Microelectromechanical Systems, 2015 , 24, 1545-1556	2.5	4
16	MEMS variable capacitor with superior linearity and large tuning ratio by moving the plate to the increasing-gap direction 2011 ,		4
15	Flexible Chemiresistive Cyclohexanone Sensors Based on Single-Walled Carbon Nanotube-Polymer Composites. <i>ACS Sensors</i> , 2021 , 6, 3056-3062	9.2	4
14	Increasing Capacitance and Self-Resonant Frequency of the MEMS Switched Capacitor Using High- \$kappa \$ TiO2 and SU-8 Bridged Beam Structure. <i>Journal of Microelectromechanical Systems</i> , 2015 , 24, 1006-1015	2.5	3
13	Low-Thermal-Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boron-Doped Reduced Graphene Oxide. <i>Advanced Science</i> , 2020 , 7, 1903318	13.6	3
12	Interpenetrating Polymer Semiconductor Nanonetwork Channel for Ultrasensitive, Selective, and Fast Recovered Chemodetection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 55107-55115	9.5	2
11	Electrospun Functional Nanofibers and Their Applications in Chemical Sensors and Li-Ion Batteries 2014 , 793-838		2
10	Rational design approaches of two-dimensional metal oxides for chemiresistive gas sensors: A comprehensive review. <i>MRS Bulletin</i> , 2021 , 46, 1080-1094	3.2	2
9	2D layered Mn and Ru oxide nanosheets for real-time breath humidity monitoring. <i>Applied Surface Science</i> , 2022 , 573, 151481	6.7	2
8	Selective acetate recognition and sensing using SWCNTs functionalized with croconamides. <i>Sensors and Actuators B: Chemical</i> , 2021 , 346, 130461	8.5	2
7	Protein-Encapsulated Catalysts: WO3 Nanofiber-Based Biomarker Detectors Enabled by Protein-Encapsulated Catalyst Self-Assembled on Polystyrene Colloid Templates (Small 7/2016). <i>Small</i> , 2016 , 12, 964-964	11	1
6	Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor. Journal of Sensor Science and Technology, 2021 , 30, 369-375	0.3	1
5	Effect of metal/metal oxide catalysts on graphene fiber for improved NO2 sensing. <i>Sensors and Actuators B: Chemical</i> , 2021 , 344, 130231	8.5	1
4	Gas Sensors: Few-Layered WS2 Nanoplates Confined in Co, N-Doped Hollow Carbon Nanocages: Abundant WS2 Edges for Highly Sensitive Gas Sensors (Adv. Funct. Mater. 36/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870254	15.6	O
3	2D Oxide Sensors: Heterogeneous, Porous 2D Oxide Sheets via Rapid Galvanic Replacement: Toward Superior HCHO Sensing Application (Adv. Funct. Mater. 42/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970290	15.6	
2	Nanofibers and Nanotubes 2015 , 415-442		
1	Selective acetate detection using functional carbon nanotube fiber. <i>Journal of Sensor Science and Technology</i> , 2021 , 30, 357-363	0.3	