Gregory J Riely

List of Publications by Citations

Source: https://exaly.com/author-pdf/170908/gregory-j-riely-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38,395 181 164 74 h-index g-index citations papers 181 46,210 6.93 9.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
164	International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. <i>Journal of Thoracic Oncology</i> , 2011 , 6, 244-85	8.9	3178
163	Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. <i>PLoS Medicine</i> , 2005 , 2, e73	11.6	2628
162	Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. <i>New England Journal of Medicine</i> , 2013 , 368, 2385-94	59.2	2594
161	Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. <i>Clinical Cancer Research</i> , 2013 , 19, 2240-7	12.9	1655
160	Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. <i>Nature Medicine</i> , 2017 , 23, 703-713	50.5	1638
159	Tumor mutational load predicts survival after immunotherapy across multiple cancer types. <i>Nature Genetics</i> , 2019 , 51, 202-206	36.3	1435
158	MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20932-7	11.5	1395
157	Crizotinib in ROS1-rearranged non-small-cell lung cancer. <i>New England Journal of Medicine</i> , 2014 , 371, 1963-71	59.2	1267
156	KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. <i>PLoS Medicine</i> , 2005 , 2, e17	11.6	1160
155	Ceritinib in ALK-rearranged non-small-cell lung cancer. <i>New England Journal of Medicine</i> , 2014 , 370, 11	89 5 972	1119
154	Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. <i>Lancet Oncology, The</i> , 2012 , 13, 1011-9	21.7	983
153	Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. <i>Journal of Clinical Oncology</i> , 2018 , 36, 633-641	2.2	730
152	OncoKB: A Precision Oncology Knowledge Base. <i>JCO Precision Oncology</i> , 2017 , 2017,	3.6	699
151	Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. <i>Clinical Cancer Research</i> , 2006 , 12, 6494-501	12.9	677
150	Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. <i>Journal of Clinical Oncology</i> , 2010 , 28, 357-60	2.2	615
149	Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. <i>Clinical Cancer Research</i> , 2006 , 12, 839-44	12.9	597
148	Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. <i>Lancet Oncology, The</i> , 2014 , 15, 1119-28	21.7	523

147	Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. <i>Journal of Clinical Oncology</i> , 2011 , 29, 2046-51	2.2	509
146	Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer. <i>Journal of Clinical Oncology</i> , 2018 , 36, 2872-2878	2.2	477
145	Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. <i>Clinical Cancer Research</i> , 2011 , 17, 1616	- 12 .9	470
144	Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. <i>Lancet Oncology, The</i> , 2016 , 17, 234-242	21.7	457
143	Non-small cell lung cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2010, 8, 740-	8,03	457
142	Clinical Experience With Crizotinib in Patients With Advanced ALK-Rearranged Non-Small-Cell Lung Cancer and Brain Metastases. <i>Journal of Clinical Oncology</i> , 2015 , 33, 1881-8	2.2	454
141	Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. <i>Clinical Cancer Research</i> , 2008 , 14, 5731-4	12.9	429
140	ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. <i>Clinical Cancer Research</i> , 2013 , 19, 4273-81	12.9	411
139	KRAS mutations in non-small cell lung cancer. <i>Proceedings of the American Thoracic Society</i> , 2009 , 6, 201	-5	399
138	Systemic Therapy for Locally Advanced and Metastatic Non-Small Cell Lung Cancer: A Review. <i>JAMA - Journal of the American Medical Association</i> , 2019 , 322, 764-774	27.4	383
137	Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. <i>Clinical Cancer Research</i> , 2012 , 18, 6169-77	12.9	368
136	Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E2127-33	11.5	366
135	Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. <i>Lancet Oncology, The</i> , 2018 , 19, 1654-1667	21.7	361
134	Systemic Therapy for Stage IV Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. <i>Journal of Clinical Oncology</i> , 2017 , 35, 3484-3515	2.2	358
133	Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. <i>Clinical Cancer Research</i> , 2011 , 17, 6298-303	12.9	330
132	Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. <i>Clinical Cancer Research</i> , 2009 , 15, 5267-73	12.9	328
131	Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies. <i>Cancer Discovery</i> , 2017 , 7, 596-609	24.4	317
130	Update on epidermal growth factor receptor mutations in non-small cell lung cancer. <i>Clinical Cancer Research</i> , 2006 , 12, 7232-41	12.9	315

129	Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. <i>Science Translational Medicine</i> , 2013 , 5, 216ra177	17.5	313
128	Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. <i>Cancer Discovery</i> , 2014 , 4, 1036-45	24.4	302
127	Detection of T790M, the Acquired Resistance EGFR Mutation, by Tumor Biopsy versus Noninvasive Blood-Based Analyses. <i>Clinical Cancer Research</i> , 2016 , 22, 1103-10	12.9	282
126	Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. <i>Lancet Oncology, The</i> , 2016 , 17, 1653-1660	21.7	277
125	Non-small cell lung cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2012, 10, 123	3 6. ₹1	270
124	Targeting ALK: Precision Medicine Takes on Drug Resistance. <i>Cancer Discovery</i> , 2017 , 7, 137-155	24.4	269
123	Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. <i>Lancet Oncology, The</i> , 2016 , 17, 642-50	21.7	269
122	Non-Small Cell Lung Cancer, Version 6.2015. <i>Journal of the National Comprehensive Cancer Network: JNCCN</i> , 2015 , 13, 515-24	7.3	268
121	Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. <i>Clinical Cancer Research</i> , 2007 , 13, 5150-5	12.9	252
120	Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. <i>Journal of Thoracic Oncology</i> , 2013 , 8, 346-51	8.9	240
119	Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. <i>Clinical Cancer Research</i> , 2008 , 14, 7519-25	12.9	227
118	Ado-Trastuzumab Emtansine for Patients With HER2-Mutant Lung Cancers: Results From a Phase II Basket Trial. <i>Journal of Clinical Oncology</i> , 2018 , 36, 2532-2537	2.2	217
117	Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. <i>Journal of Clinical Oncology</i> , 2011 , 29, 2066-70	2.2	195
116	Use of cigarette-smoking history to estimate the likelihood of mutations in epidermal growth factor receptor gene exons 19 and 21 in lung adenocarcinomas. <i>Journal of Clinical Oncology</i> , 2006 , 24, 1700-4	2.2	184
115	Effects of Co-occurring Genomic Alterations on Outcomes in Patients with -Mutant Non-Small Cell Lung Cancer. <i>Clinical Cancer Research</i> , 2018 , 24, 334-340	12.9	173
114	Acquired Resistance of EGFR-Mutant Lung Cancer to a T790M-Specific EGFR Inhibitor: Emergence of a Third Mutation (C797S) in the EGFR Tyrosine Kinase Domain. <i>JAMA Oncology</i> , 2015 , 1, 982-4	13.4	171
113	Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. <i>Molecular Cancer Therapeutics</i> , 2012 , 11, 485-91	6.1	166
112	Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with -Mutant Lung Cancers. <i>Clinical Cancer Research</i> , 2019 , 25, 1063-1069	12.9	156

111	Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. <i>Lancet Oncology, The</i> , 2019 , 20, 1691-1701	21.7	136
110	Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib. <i>Clinical Cancer Research</i> , 2008 , 14, 7060-7	12.9	135
109	Therapy for Stage IV Non-Small-Cell Lung Cancer Without Driver Alterations: ASCO and OH (CCO) Joint Guideline Update. <i>Journal of Clinical Oncology</i> , 2020 , 38, 1608-1632	2.2	129
108	Distinct clinical course of EGFR-mutant resected lung cancers: results of testing of 1118 surgical specimens and effects of adjuvant gefitinib and erlotinib. <i>Journal of Thoracic Oncology</i> , 2012 , 7, 1815-18	322	128
107	Concurrent Alterations in EGFR-Mutant Lung Cancers Associated with Resistance to EGFR Kinase Inhibitors and Characterization of MTOR as a Mediator of Resistance. <i>Clinical Cancer Research</i> , 2018 , 24, 3108-3118	12.9	123
106	Association of KRAS and EGFR mutations with survival in patients with advanced lung adenocarcinomas. <i>Cancer</i> , 2013 , 119, 356-62	6.4	122
105	Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. <i>Cancer</i> , 2015 , 121, 3212-3220	6.4	119
104	Frequency of EGFR and KRAS mutations in lung adenocarcinomas in African Americans. <i>Journal of Thoracic Oncology</i> , 2011 , 6, 28-31	8.9	107
103	A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. <i>Journal of Thoracic Oncology</i> , 2011 , 6, 1435-7	8.9	106
102	A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. <i>Clinical Cancer Research</i> , 2016 , 22, 2351-8	12.9	104
101	Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation. <i>American Journal of Surgical Pathology</i> , 2014 , 38, 1118-27	6.7	104
100	Phase I/II trial of cetuximab and erlotinib in patients with lung adenocarcinoma and acquired resistance to erlotinib. <i>Clinical Cancer Research</i> , 2011 , 17, 2521-7	12.9	103
99	Tumor Analyses Reveal Squamous Transformation and Off-Target Alterations As Early Resistance Mechanisms to First-line Osimertinib in -Mutant Lung Cancer. <i>Clinical Cancer Research</i> , 2020 , 26, 2654-26	6 63 9	103
98	Concurrent RB1 and TP53 Alterations Define albubset of EGFR-Mutant Lung Cancers at risk for Histologic Transformation and Inferior Clinical Outcomes. <i>Journal of Thoracic Oncology</i> , 2019 , 14, 1784-1793	8.9	102
97	Characteristics of lung cancers harboring NRAS mutations. <i>Clinical Cancer Research</i> , 2013 , 19, 2584-91	12.9	100
96	Acquired Resistance to KRAS Inhibition in Cancer. New England Journal of Medicine, 2021, 384, 2382-239	93 9.2	91
95	Phase I/II Study of HSP90 Inhibitor AUY922 and Erlotinib for EGFR-Mutant Lung Cancer With Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors. <i>Journal of Clinical Oncology</i> , 2015 , 33, 1666-73	2.2	84
94	Pack-years of cigarette smoking as a prognostic factor in patients with stage IIIB/IV nonsmall cell lung cancer. <i>Cancer</i> , 2010 , 116, 670-5	6.4	84

93	Large Cell Neuroendocrine Carcinoma of the Lung: Clinico-Pathologic Features, Treatment, and Outcomes. <i>Clinical Lung Cancer</i> , 2016 , 17, e121-e129	4.9	83
92	Clinical characteristics and course of 63 patients with BRAF mutant lung cancers. <i>Journal of Thoracic Oncology</i> , 2014 , 9, 1669-74	8.9	83
91	SMARCA4-Deficient Thoracic Sarcomatoid Tumors Represent Primarily Smoking-Related Undifferentiated Carcinomas Rather Than Primary Thoracic Sarcomas. <i>Journal of Thoracic Oncology</i> , 2020 , 15, 231-247	8.9	82
90	Erlotinib versus radiation therapy for brain metastases in patients with EGFR-mutant lung adenocarcinoma. <i>International Journal of Radiation Oncology Biology Physics</i> , 2014 , 89, 322-9	4	74
89	Prognostic impact of KRAS mutation subtypes in 677 patients with metastatic lung adenocarcinomas. <i>Journal of Thoracic Oncology</i> , 2015 , 10, 431-7	8.9	73
88	Frequency of Brain Metastases and Multikinase Inhibitor Outcomes in Patients With RET-Rearranged Lung Cancers. <i>Journal of Thoracic Oncology</i> , 2018 , 13, 1595-1601	8.9	69
87	Therapeutic strategies utilized in the setting of acquired resistance to EGFR tyrosine kinase inhibitors. <i>Clinical Cancer Research</i> , 2014 , 20, 5898-907	12.9	67
86	A Prospective Study of Circulating Tumor DNA to Guide Matched Targeted Therapy in Lung Cancers. <i>Journal of the National Cancer Institute</i> , 2019 , 111, 575-583	9.7	60
85	EGFR: The Paradigm of an Oncogene-Driven Lung Cancer. Clinical Cancer Research, 2015, 21, 2221-6	12.9	59
84	Therapy for Stage IV Non-Small-Cell Lung Cancer With Driver Alterations: ASCO and OH (CCO) Joint Guideline Update. <i>Journal of Clinical Oncology</i> , 2021 , 39, 1040-1091	2.2	59
83	Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with Exon 20 Insertion Mutations from a Phase I/II Trial. <i>Cancer Discovery</i> , 2021 , 11, 1688-1699	24.4	57
82	Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. <i>Journal of Thoracic Oncology</i> , 2008 , 3, S146-9	8.9	56
81	Are there imaging characteristics associated with lung adenocarcinomas harboring ALK rearrangements?. <i>Lung Cancer</i> , 2014 , 86, 190-4	5.9	52
80	Thymomas and thymic carcinomas: Clinical Practice Guidelines in Oncology. <i>Journal of the National Comprehensive Cancer Network: JNCCN</i> , 2013 , 11, 562-76	7.3	51
79	A phase 2 study of TZT-1027, administered weekly to patients with advanced non-small cell lung cancer following treatment with platinum-based chemotherapy. <i>Lung Cancer</i> , 2007 , 55, 181-5	5.9	51
78	Randomized phase II study of pulse erlotinib before or after carboplatin and paclitaxel in current or former smokers with advanced non-small-cell lung cancer. <i>Journal of Clinical Oncology</i> , 2009 , 27, 264-70	2.2	49
77	Effect of Osimertinib and Bevacizumab on Progression-Free Survival for Patients With Metastatic EGFR-Mutant Lung Cancers: A Phase 1/2 Single-Group Open-Label Trial. <i>JAMA Oncology</i> , 2020 , 6, 1048-	1634	48
76	Driver mutations determine survival in smokers and never-smokers with stage IIIB/IV lung adenocarcinomas. <i>Cancer</i> , 2012 , 118, 5840-7	6.4	44

(2021-2018)

75	Brigatinib in Patients With Alectinib-Refractory ALK-Positive NSCLC. <i>Journal of Thoracic Oncology</i> , 2018 , 13, 1530-1538	8.9	43	
74	Massively parallel sequencing identifies recurrent mutations in TP53 in thymic carcinoma associated with poor prognosis. <i>Journal of Thoracic Oncology</i> , 2015 , 10, 373-80	8.9	39	
73	Acquired BRAF Rearrangements Induce Secondary Resistance to EGFR therapy in EGFR-Mutated Lung Cancers. <i>Journal of Thoracic Oncology</i> , 2019 , 14, 802-815	8.9	38	
72	The Genomic Landscape of Alterations and Associations with Outcomes in Patients with Lung Cancer. <i>Clinical Cancer Research</i> , 2020 , 26, 5701-5708	12.9	38	
71	Comprehensive Next-Generation Sequencing Unambiguously Distinguishes Separate Primary Lung Carcinomas From Intrapulmonary Metastases: Comparison with Standard Histopathologic Approach. <i>Clinical Cancer Research</i> , 2019 , 25, 7113-7125	12.9	36	
70	Expression of PD-L1 and other immunotherapeutic targets in thymic epithelial tumors. <i>PLoS ONE</i> , 2017 , 12, e0182665	3.7	35	
69	Acquired and Gene Fusions as Mechanisms of Resistance to Osimertinib in -Mutant Lung Cancers. <i>JCO Precision Oncology</i> , 2018 , 2,	3.6	33	
68	Efficacy of Platinum/Pemetrexed Combination Chemotherapy in ALK-Positive NSCLC Refractory to Second-Generation ALK Inhibitors. <i>Journal of Thoracic Oncology</i> , 2020 , 15, 258-265	8.9	32	
67	A Phase 1/2 Trial of Ruxolitinib and Erlotinib in Patients with EGFR-Mutant Lung Adenocarcinomas with Acquired Resistance to Erlotinib. <i>Journal of Thoracic Oncology</i> , 2017 , 12, 102-109	8.9	29	
66	Induction therapy for locally advanced thymoma. <i>Journal of Thoracic Oncology</i> , 2010 , 5, S323-6	8.9	29	
65	Treatment Outcomes and Safety of Mobocertinib in Platinum-Pretreated Patients With EGFR Exon 20 Insertion-Positive Metastatic Non-Small Cell Lung Cancer: A Phase 1/2 Open-label Nonrandomized Clinical Trial. <i>JAMA Oncology</i> , 2021 , e214761	13.4	28	
64	Frequency and outcomes of brain metastases in patients with HER2-mutant lung cancers. <i>Cancer</i> , 2019 , 125, 4380-4387	6.4	26	
63	Safety and efficacy of nazartinib (EGF816) in adults with EGFR-mutant non-small-cell lung carcinoma: a multicentre, open-label, phase 1 study. <i>Lancet Respiratory Medicine,the</i> , 2020 , 8, 561-572	35.1	26	
62	amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6030-E6038	11.5	24	
61	Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology <i>Journal of the National Comprehensive Cancer Network: JNCCN</i> , 2022 , 20, 497-530	7.3	24	
60	Patterns of initial and intracranial failure in metastatic EGFR-mutant non-small cell lung cancer treated with erlotinib. <i>Lung Cancer</i> , 2017 , 108, 109-114	5.9	22	
59	Lungs don't forget: Comparison of the KRAS and EGFR mutation profile and survival of collegiate smokers and never smokers with advanced lung cancers. <i>Journal of Thoracic Oncology</i> , 2013 , 8, 123-5	8.9	22	
58	Diverse alterations associated with resistance to KRAS(G12C) inhibition. <i>Nature</i> , 2021 , 599, 679-683	50.4	20	

57	Renal cyst formation in patients treated with crizotinib for non-small cell lung cancer-Incidence, radiological features and clinical characteristics. <i>Lung Cancer</i> , 2017 , 106, 33-36	5.9	19
56	Response to Standard Therapies and Comprehensive Genomic Analysis for Patients with Lung Adenocarcinoma with Exon 20 Insertions. <i>Clinical Cancer Research</i> , 2021 , 27, 2920-2927	12.9	18
55	Clinical Application of Picodroplet Digital PCR Technology for Rapid Detection of EGFR T790M in Next-Generation Sequencing Libraries and DNA from Limited Tumor Samples. <i>Journal of Molecular Diagnostics</i> , 2016 , 18, 903-911	5.1	17
54	The use of first-generation tyrosine kinase inhibitors in patients with NSCLC and somatic EGFR mutations. <i>Lung Cancer</i> , 2008 , 60 Suppl 2, S19-22	5.9	17
53	Twice weekly pulse and daily continuous-dose erlotinib as initial treatment for patients with epidermal growth factor receptor-mutant lung cancers and brain metastases. <i>Cancer</i> , 2018 , 124, 105-10	o ^{6.4}	16
52	Incorporation of crizotinib into the NCCN guidelines. <i>Journal of the National Comprehensive Cancer Network: JNCCN</i> , 2011 , 9, 1328-30	7.3	16
51	Multimodality therapy for locally advanced thymomas: state of the art or investigational therapy?. <i>Annals of Thoracic Surgery</i> , 2008 , 85, 365-7	2.7	16
50	Deep Learning to Estimate RECIST in Patients with NSCLC Treated with PD-1 Blockade. <i>Cancer Discovery</i> , 2021 , 11, 59-67	24.4	16
49	Treatment Outcomes and Clinical Characteristics of Patients with KRAS-G12C-Mutant Non-Small Cell Lung Cancer. <i>Clinical Cancer Research</i> , 2021 , 27, 2209-2215	12.9	16
48	A Genomic-Pathologic Annotated Risk Model to Predict Recurrence in Early-Stage Lung Adenocarcinoma. <i>JAMA Surgery</i> , 2021 , 156, e205601	5.4	16
47	Exceptional responders with invasive mucinous adenocarcinomas: a phase 2 trial of bortezomib in patients with G12D-mutant lung cancers. <i>Journal of Physical Education and Sports Management</i> , 2019 , 5,	2.8	15
46	Efficacy of Vemurafenib in Patients With Non-Small-Cell Lung Cancer With V600 Mutation: An Open-Label, Single-Arm Cohort of the Histology-Independent VE-BASKET Study. <i>JCO Precision Oncology</i> , 2019 , 3,	3.6	15
45	Diagnosis and Treatment of Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer. Hematology/Oncology Clinics of North America, 2017 , 31, 101-111	3.1	14
44	Radiogenomic evaluation of lung cancer - Are there imaging characteristics associated with lung adenocarcinomas harboring BRAF mutations?. <i>Clinical Imaging</i> , 2017 , 42, 147-151	2.7	14
43	Thymic Carcinoma Management Patterns among International Thymic Malignancy Interest Group (ITMIG) Physicians with Consensus from the Thymic Carcinoma Working Group. <i>Journal of Thoracic Oncology</i> , 2017 , 12, 745-751	8.9	14
42	MAPK Pathway Alterations Correlate with Poor Survival and Drive Resistance to Therapy in Patients with Lung Cancers Driven by Fusions. <i>Clinical Cancer Research</i> , 2020 , 26, 2932-2945	12.9	14
41	KRAS mutational testing in the selection of patients for EGFR-targeted therapies. <i>Seminars in Diagnostic Pathology</i> , 2008 , 25, 288-94	4.3	13
40	Harnessing Clinical Sequencing Data for Survival Stratification of Patients with Metastatic Lung Adenocarcinomas. <i>JCO Precision Oncology</i> , 2019 , 3,	3.6	13

(2020-2015)

39	Differences in the survival of patients with recurrent versus de novo metastatic KRAS-mutant and EGFR-mutant lung adenocarcinomas. <i>Cancer</i> , 2015 , 121, 2078-82	6.4	12
38	The impact of cigarette smoking on the frequency of and qualitative differences in KRAS mutations in Korean patients with lung adenocarcinoma. <i>Yonsei Medical Journal</i> , 2013 , 54, 865-74	3	12
37	Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients <i>Cell</i> , 2022 , 185, 563-575.e11	56.2	11
36	Lessons learned from routine, targeted assessment of liquid biopsies for T790M resistance mutation in patients with mutant lung cancers. <i>Acta Oncolgica</i> , 2019 , 58, 1634-1639	3.2	9
35	Mutation Is Associated with Increased Risk of Recurrence in Surgically Resected Lung Adenocarcinoma. <i>Clinical Cancer Research</i> , 2021 , 27, 2604-2612	12.9	9
34	Identification and Functional Characterization of V769M, a Novel Germline Variant Associated With Multiple Lung Adenocarcinomas. <i>JCO Precision Oncology</i> , 2017 , 1,	3.6	7
33	Long-term, disease-specific outcomes of thymic malignancies presenting with de novo pleural metastasis. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2020 , 159, 705-714.e1	1.5	7
32	CNS Metastases in Patients With Exon 14-Altered Lung Cancers and Outcomes With Crizotinib. <i>JCO Precision Oncology</i> , 2020 , 4,	3.6	7
31	Combining EGFR targeted therapy with chemotherapy in pancreatic cancer: is timing important?. <i>Cancer Biology and Therapy</i> , 2005 , 4, 1096-7	4.6	4
30	Comprehensive assessment of targetable alterations in lung adenocarcinoma samples with limited material using MSK-IMPACT, a clinical, hybrid capture-based, next-generation sequencing (NGS) assay <i>Journal of Clinical Oncology</i> , 2015 , 33, e22160-e22160	2.2	4
29	A phase 1 study of osimertinib and bevacizumab as initial treatment for patients with EGFR-mutant lung cancers <i>Journal of Clinical Oncology</i> , 2017 , 35, 9033-9033	2.2	4
28	Pilot Study of Dacomitinib for Patients With Metastatic -Mutant Lung Cancers With Disease Progression After Initial Treatment With Osimertinib. <i>JCO Precision Oncology</i> , 2021 , 5,	3.6	4
27	CT Radiomic Features for Predicting Resectability and TNM Staging in Thymic Epithelial Tumors. <i>Annals of Thoracic Surgery</i> , 2021 ,	2.7	3
26	SMARCA4 inactivation promotes lineage-specific transformation and early metastatic features in the lung. <i>Cancer Discovery</i> , 2021 ,	24.4	3
25	Emerging science and therapies in non-small-cell lung cancer: targeting the MET pathway. <i>Clinical Lung Cancer</i> , 2014 , 15, 475	4.9	2
24	Beyond "second-line" in non-small cell lung cancer: therapy and supportive care. <i>American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting</i> , 2015 , e414-	8 ^{7.1}	2
23	Nazartinib (EGF816) in patients with treatment-nalle EGFR-mutant non-small cell lung cancer (NSCLC): Updated phase II results <i>Journal of Clinical Oncology</i> , 2020 , 38, 9574-9574	2.2	2
22	Clinical characteristics and anti-PD-(L)1 treatment outcomes of KRAS-G12C mutant lung cancer compared to other molecular subtypes of KRAS-mutant lung cancer <i>Journal of Clinical Oncology</i> , 2020 , 38, 9596-9596	2.2	2

21	Chemo-immunotherapy outcomes of KRAS-G12C mutant lung cancer compared to other molecular subtypes of KRAS-mutant lung cancer <i>Journal of Clinical Oncology</i> , 2021 , 39, 9088-9088	2.2	2
20	Clinical utility of next-generation sequencing-based ctDNA testing for common and novel ALK fusions. <i>Lung Cancer</i> , 2021 , 159, 66-73	5.9	2
19	Lung cancer in 'Never-smokers': molecular factors trump risk factors. <i>Oncology</i> , 2010 , 24, 38, 40	1.8	2
18	The Use of Antiangiogenic Agents for Lung Cancer in Elderly Patients: An Expert Panel Discussion Synopsis. <i>Clinical Lung Cancer</i> , 2017 , 18, 255-258	4.9	1
17	Case for Stopping Targeted Therapy When Lung Cancer Progresses on Treatment in Hospice-Eligible Patients. <i>Journal of Oncology Practice</i> , 2017 , 13, 780-783	3.1	1
16	Reply to M.C. Garassino et al. <i>Journal of Clinical Oncology</i> , 2011 , 29, 3838-3839	2.2	1
15	Multidisciplinary management of thymic carcinoma. <i>American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting</i> , 2012 , 466-70	7.1	1
14	Automated NLP Extraction of Clinical Rationale for Treatment Discontinuation in Breast Cancer. <i>JCO Clinical Cancer Informatics</i> , 2021 , 5, 550-560	5.2	1
13	Type A thymoma presenting with bone metastasis. <i>Histopathology</i> , 2018 , 73, 701-703	7.3	1
12	Immune biomarkers and response to checkpoint inhibition of BRAF and BRAF non-V600 altered lung cancers <i>British Journal of Cancer</i> , 2021 ,	8.7	1
11	Phase 1 Clinical Trial of Trametinib and Ponatinib in Patients With NSCLC Harboring Mutations <i>JTO Clinical and Research Reports</i> , 2022 , 3, 100256	1.4	O
10	Pan-cancer evaluation of homologous repair deficiency somatic mutations and response to first-line anti-neoplastic therapy <i>Journal of Clinical Oncology</i> , 2021 , 39, 10535-10535	2.2	O
9	Clinical and genomic predictors of brain metastases (BM) in non-small cell lung cancer (NSCLC): An AACR Project GENIE analysis <i>Journal of Clinical Oncology</i> , 2021 , 39, 2032-2032	2.2	O
8	A Scalable Quality Assurance Process for Curating Oncology Electronic Health Records: The Project GENIE Biopharma Collaborative Approach <i>JCO Clinical Cancer Informatics</i> , 2022 , 6, e2100105	5.2	O
7	Validation of a Population-Based Data Source to Examine National Cancer Clinical Trial Participation <i>JAMA Network Open</i> , 2022 , 5, e223687	10.4	0
6	Poly adenosine diphosphate-ribose polymerase inhibitors and heat shock protein 90 inhibitors. <i>Journal of Thoracic Oncology</i> , 2011 , 6, S1803-4	8.9	
5	Bronchioloalveolar Carcinoma of the Lung 2012 , 355-363		
4	Bronchioloalveolar Carcinoma of the Lung 2006 , 313-320		

LIST OF PUBLICATIONS

3	Progression-free survival estimates in non-small cell lung cancer when RECIST is unavailable: Project GENIEB integration of genomic, therapeutic and phenomic data <i>Journal of Clinical Oncology</i> , 2020 , 38, 9622-9622	2.2
2	YES1 amplification as a primary driver of lung tumorigenesis and YES1/YAP1 amplifications as mediators of acquired resistance (AR) to ALK and EGFR tyrosine kinase inhibitors (TKIs) <i>Journal of Clinical Oncology</i> , 2020 , 38, e21591-e21591	2.2
1	Translating inspiration from COVID-19 vaccine trials to innovations in clinical cancer research. <i>Cancer Cell</i> , 2021 , 39, 897-899	24.3