Enrico Tubaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1708562/publications.pdf

Version: 2024-02-01

236925 315739 1,572 52 25 38 h-index citations g-index papers 53 53 53 908 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Resilience assessment framework for critical infrastructure in a multi-hazard environment: Case study on transport assets. Science of the Total Environment, 2020, 714, 136854.	8.0	153
2	The Science behind Scour at Bridge Foundations: A Review. Water (Switzerland), 2020, 12, 374.	2.7	77
3	Performance-based seismic risk assessment for buildings equipped with linear and nonlinear viscous dampers. Engineering Structures, 2014, 78, 90-99.	5.3	73
4	Innovations in earthquake risk reduction for resilience: Recent advances and challenges. International Journal of Disaster Risk Reduction, 2021, 60, 102267.	3.9	72
5	Modal properties variation and collapse assessment of masonry arch bridges under scour action. Engineering Structures, 2019, 199, 109665.	5.3	70
6	Three-dimensional mesoscale modelling of multi-span masonry arch bridges subjected to scour. Engineering Structures, 2018, 165, 486-500.	5. 3	61
7	Influence of Model Parameter Uncertainty on Seismic Transverse Response and Vulnerability of Steel–Concrete Composite Bridges with Dual Load Path. Journal of Structural Engineering, 2012, 138, 363-374.	3.4	59
8	Influence of the nonlinear behavior of viscous dampers on the seismic demand hazard of building frames. Earthquake Engineering and Structural Dynamics, 2016, 45, 149-169.	4.4	57
9	A framework for probabilistic assessment of clear-water scour around bridge piers. Structural Safety, 2017, 69, 11-22.	5.3	56
10	Reliability-based optimal design of nonlinear viscous dampers for the seismic protection of structural systems. Bulletin of Earthquake Engineering, 2018, 16, 963-982.	4.1	56
11	Probabilistic performance assessment of lowâ€ductility reinforced concrete frames retrofitted with dissipative braces. Earthquake Engineering and Structural Dynamics, 2013, 42, 993-1011.	4.4	52
12	Probabilistic seismic response assessment of linear systems equipped with nonlinear viscous dampers. Earthquake Engineering and Structural Dynamics, 2015, 44, 101-120.	4.4	52
13	Nonstationary stochastic response of structural systems equipped with nonlinear viscous dampers under seismic excitation. Earthquake Engineering and Structural Dynamics, 2015, 44, 121-138.	4.4	44
14	Comparison of methods to develop risk-targeted seismic design maps. Bulletin of Earthquake Engineering, 2019, 17, 3727-3752.	4.1	43
15	A probabilistic performanceâ€based approach for mitigating the seismic pounding risk between adjacent buildings. Earthquake Engineering and Structural Dynamics, 2013, 42, 1203-1219.	4.4	39
16	Probabilistic seismic demand model for pounding risk assessment. Earthquake Engineering and Structural Dynamics, 2016, 45, 1743-1758.	4.4	37
17	Effect of the damper property variability on the seismic reliability of linear systems equipped with viscous dampers. Bulletin of Earthquake Engineering, 2017, 15, 5025-5053.	4.1	36
18	Seismic risk sensitivity of structures equipped with anti-seismic devices with uncertain properties. Structural Safety, 2019, 77, 30-47.	5.3	34

#	Article	IF	Citations
19	Assessment of the effectiveness of Multiple-Stripe Analysis by using a stochastic earthquake input model. Bulletin of Earthquake Engineering, 2020, 18, 3167-3203.	4.1	33
20	Seismic performance of dual systems coupling momentâ€resisting and bucklingâ€restrained braced frames. Earthquake Engineering and Structural Dynamics, 2021, 50, 329-353.	4.4	32
21	Stress softening behaviour of HDNR bearings: modelling and influence on the seismic response of isolated structures. Earthquake Engineering and Structural Dynamics, 2017, 46, 2033-2054.	4.4	30
22	New Analytical Solution of the First-Passage Reliability Problem for Linear Oscillators. Journal of Engineering Mechanics - ASCE, 2012, 138, 695-706.	2.9	29
23	Influence of viscous dampers ultimate capacity on the seismic reliability of building structures. Structural Safety, 2021, 91, 102096.	5.3	29
24	Electromagnetic Sensors for Underwater Scour Monitoring. Sensors, 2020, 20, 4096.	3.8	28
25	Seismic response analysis of slender bridge piers. Earthquake Engineering and Structural Dynamics, 2014, 43, 1503-1519.	4.4	27
26	Quantification of Modelling Uncertainties in Bridge Scour Risk Assessment under Multiple Flood Events. Geosciences (Switzerland), 2019, 9, 445.	2.2	26
27	Mesoscale partitioned modelling of masonry bridges allowing for arch-backfill interaction. Construction and Building Materials, 2018, 173, 820-842.	7.2	25
28	Biaxial shear behaviour of HDNR with Mullins effect and deformation-induced anisotropy. Engineering Structures, 2018, 154, 78-92.	5.3	25
29	Invited perspectives: Challenges and future directions in improving bridge flood resilience. Natural Hazards and Earth System Sciences, 2022, 22, 795-812.	3.6	19
30	A design method for seismically isolated bridges with abutment restraint. Engineering Structures, 2011, 33, 786-795.	5.3	18
31	Transverse free vibrations of continuous bridges with abutment restraint. Earthquake Engineering and Structural Dynamics, 2012, 41, 1319-1340.	4.4	18
32	Identification of critical mechanical parameters for advanced analysis of masonry arch bridges. Structure and Infrastructure Engineering, 2020, 16, 328-345.	3.7	17
33	Evaluating alternative approaches for the seismic design of structures. Bulletin of Earthquake Engineering, 2020, 18, 4331-4361.	4.1	17
34	A Design Method for Viscous Dampers Connecting Adjacent Structures. Frontiers in Built Environment, 2020, 6, .	2.3	14
35	Mechanical behaviour of rubber bearings with low shape factor. Engineering Structures, 2022, 266, 114532.	5.3	13
36	Examining the contribution of near real-time data for rapid seismic loss assessment of structures. Structural Health Monitoring, 2022, 21, 118-137.	7. 5	12

#	Article	IF	CITATIONS
37	Seismic risk management through insurance and its sensitivity to uncertainty in the hazard model. Natural Hazards, 2021, 108, 1629-1657.	3.4	12
38	Numerical modelling of reinforced concrete frames with masonry infills and rubber joints. Engineering Structures, 2021, 246, 112833.	5.3	12
39	Stochastic Seismic Analysis and Comparison of Alternative External Dissipative Systems. Shock and Vibration, 2018, 2018, 1-16.	0.6	9
40	Using Bayesian networks for the assessment of underwater scour for road and railway bridges. Structural Health Monitoring, 2021, 20, 2446-2460.	7.5	7
41	Behaviour of Structures Isolated by HDNR Bearings at Design and Service Conditions. Journal of Earthquake Engineering, 2022, 26, 1743-1766.	2.5	7
42	Vibration-Based and Near Real-Time Seismic Damage Assessment Adaptive to Building Knowledge Level. Buildings, 2022, 12, 416.	3.1	6
43	A monitoring-based classification system for risk management of bridge scour. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction, 0 , 1 -11.	1.7	6
44	Reduced formulation for post-elastic seismic response of dual load path bridges. Engineering Structures, 2013, 51, 178-187.	5.3	5
45	Assessment of optimal design methods of viscous dampers. Procedia Engineering, 2017, 199, 1152-1157.	1.2	5
46	Dynamic identification and collapse assessment of Rubbianello Bridge. IABSE Symposium Report, 2019, , .	0.0	5
47	Raspberry Shake-Based Rapid Structural Identification of Existing Buildings Subject to Earthquake Ground Motion: The Case Study of Bucharest. Sensors, 2022, 22, 4787.	3.8	4
48	A Bayesian networkâ€based probabilistic framework for updating aftershock risk of bridges. Earthquake Engineering and Structural Dynamics, 2022, 51, 2496-2519.	4.4	4
49	Probabilistic risk analysis of structural impact in seismic events for linear and nonlinear systems. Earthquake Engineering and Structural Dynamics, 2015, 44, 491-493.	4.4	2
50	FLOOD RISK ASSESSMENT OF MASONRY ARCH BRIDGES. , 2017, , .		2
51	Rapid earthquake loss updating of spatially distributed systems via sampling-based bayesian inference. Bulletin of Earthquake Engineering, 2022, 20, 3995-4023.	4.1	2
52	Analysis and comparison of two different configurations of external dissipative systems. Procedia Engineering, 2017, 199, 164-169.	1.2	1