
Risheng Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1708514/publications.pdf Version: 2024-02-01

RISHENC DINC

#	Article	IF	CITATIONS
1	Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 2017, 179, 5-17.	5.6	444
2	Evapotranspiration measurement and estimation using modified Priestley–Taylor model in an irrigated maize field with mulching. Agricultural and Forest Meteorology, 2013, 168, 140-148.	4.8	144
3	Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agricultural Water Management, 2013, 127, 85-96.	5.6	114
4	Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China. Agricultural Water Management, 2010, 98, 87-95.	5.6	111
5	Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors. Agricultural Water Management, 2011, 98, 1207-1214.	5.6	105
6	Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition?. Agricultural Water Management, 2016, 177, 128-137.	5.6	101
7	Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agricultural Water Management, 2017, 179, 122-131.	5.6	90
8	Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. Agricultural Water Management, 2014, 142, 135-143.	5.6	78
9	Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. Journal of Hydrology, 2016, 543, 450-461.	5.4	77
10	Quantification of maize water uptake from different layers and root zones under alternate furrow irrigation using stable oxygen isotope. Agricultural Water Management, 2016, 168, 35-44.	5.6	56
11	Mild water and salt stress improve water use efficiency by decreasing stomatal conductance via osmotic adjustment in field maize. Science of the Total Environment, 2022, 805, 150364.	8.0	50
12	Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agricultural Water Management, 2018, 203, 438-450.	5.6	47
13	Ecosystem water use efficiency for a sparse vineyard in arid northwest China. Agricultural Water Management, 2015, 148, 24-33.	5.6	42
14	Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China. Agricultural Systems, 2017, 151, 20-32.	6.1	42
15	Irrigation water productivity is more influenced by agronomic practice factors than by climatic factors in Hexi Corridor, Northwest China. Scientific Reports, 2016, 6, 37971.	3.3	41
16	Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China. Agricultural Water Management, 2017, 179, 55-63.	5.6	40
17	Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China. Agricultural Water Management, 2020, 232, 106001.	5.6	40
18	Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum, 2021, 172, 2070-2078.	5.2	40

RISHENG DING

#	Article	IF	CITATIONS
19	Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture. Agricultural Water Management, 2018, 197, 19-33.	5.6	38
20	Multiscale spectral analysis of temporal variability in evapotranspiration over irrigated cropland in an arid region. Agricultural Water Management, 2013, 130, 79-89.	5.6	37
21	An isotope method to quantify soil evaporation and evaluate water vapor movement under plastic film mulch. Agricultural Water Management, 2017, 184, 59-66.	5.6	36
22	A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model. Agricultural Water Management, 2019, 213, 116-127.	5.6	35
23	Variations of crop coefficient and its influencing factors in an arid advective cropland of northwest China. Hydrological Processes, 2015, 29, 239-249.	2.6	32
24	Annual ecosystem respiration of maize was primarily driven by crop growth and soil water conditions. Agriculture, Ecosystems and Environment, 2019, 272, 254-265.	5.3	32
25	Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maize for seed production with film-mulching in arid area. Agricultural Water Management, 2016, 178, 314-324.	5.6	31
26	Inorganic nitrogen fertilizer and high N application rate promote N2O emission and suppress CH4 uptake in a rotational vegetable system. Soil and Tillage Research, 2021, 206, 104848.	5.6	31
27	Multiple Methods to Partition Evapotranspiration in a Maize Field. Journal of Hydrometeorology, 2017, 18, 139-149.	1.9	30
28	An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect. Agricultural Water Management, 2021, 255, 107008.	5.6	30
29	Scaling Up Stomatal Conductance from Leaf to Canopy Using a Dual-Leaf Model for Estimating Crop Evapotranspiration. PLoS ONE, 2014, 9, e95584.	2.5	27
30	Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China. Journal of Arid Land, 2017, 9, 504-514.	2.3	26
31	Environmental burdens of groundwater extraction for irrigation over an inland river basin in Northwest China. Journal of Cleaner Production, 2019, 222, 182-192.	9.3	25
32	A comparison of energy partitioning and evapotranspiration over closed maize and sparse grapevine canopies in northwest China. Agricultural Water Management, 2018, 203, 251-260.	5.6	22
33	Newly developed water productivity and harvest index models for maize in an arid region. Field Crops Research, 2019, 234, 73-86.	5.1	22
34	Transpiration of female and male parents of seed maize in northwest China. Agricultural Water Management, 2019, 213, 397-409.	5.6	21
35	Water Use Effectiveness Is Enhanced Using Film Mulch Through Increasing Transpiration and Decreasing Evapotranspiration. Water (Switzerland), 2019, 11, 1153.	2.7	20
36	Improved application of the Penman–Monteith model using an enhanced Jarvis model that considers the effects of nitrogen fertilization on canopy resistance. Environmental and Experimental Botany, 2019, 159, 1-12.	4.2	20

RISHENG DING

#	Article	IF	CITATIONS
37	Applying uncertain programming model to improve regional farming economic benefits and water productivity. Agricultural Water Management, 2017, 179, 352-365.	5.6	19
38	Elevated [CO ₂] alleviates the impacts of water deficit on xylem anatomy and hydraulic properties of maize stems. Plant, Cell and Environment, 2020, 43, 563-578.	5.7	19
39	Flowering Characteristics and Yield of Maize Inbreds Grown for Hybrid Seed Production under Deficit Irrigation. Crop Science, 2017, 57, 2238-2250.	1.8	18
40	Modeling evapotranspiration and its components of maize for seed production in an arid region of northwest China using a dual crop coefficient and multisource models. Agricultural Water Management, 2019, 222, 105-117.	5.6	18
41	A dynamic surface conductance to predict crop water use from partial to full canopy cover. Agricultural Water Management, 2015, 150, 1-8.	5.6	17
42	The Dynamic Yield Response Factor of Alfalfa Improves the Accuracy of Dual Crop Coefficient Approach under Water and Salt Stress. Water (Switzerland), 2020, 12, 1224.	2.7	17
43	Light Supplement and Carbon Dioxide Enrichment Affect Yield and Quality of Off-Season Pepper. Agronomy Journal, 2017, 109, 2107-2118.	1.8	16
44	Accessing future crop yield and crop water productivity over the Heihe River basin in northwest China under a changing climate. Geoscience Letters, 2021, 8, .	3.3	16
45	Crop coefficient for spring maize under plastic mulch based on 12-year eddy covariance observation in the arid region of Northwest China. Journal of Hydrology, 2020, 588, 125108.	5.4	15
46	Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agricultural Water Management, 2022, 268, 107651.	5.6	15
47	A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress. Agricultural Water Management, 2021, 255, 107037.	5.6	14
48	Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard. Agricultural Water Management, 2019, 226, 105817.	5.6	11
49	Estimating the upper and lower limits of kernel weight under different water regimes in hybrid maize seed production. Agricultural Water Management, 2019, 213, 128-134.	5.6	11
50	Crop Water Stress Index as a Proxy of Phenotyping Maize Performance under Combined Water and Salt Stress. Remote Sensing, 2021, 13, 4710.	4.0	11
51	Soil water and nitrogen dynamics from interaction of irrigation and fertilization management practices in a greenhouse vegetable rotation. Soil Science Society of America Journal, 2020, 84, 901-913.	2.2	10
52	Modeling crop water use in an irrigated maize cropland using a biophysical process-based model. Journal of Hydrology, 2015, 529, 276-286.	5.4	8
53	Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation. Agricultural Water Management, 2017, 190, 21-30.	5.6	8
54	Simulating kernel number under different water regimes using the Water-Flowering Model in hybrid maize seed production. Agricultural Water Management, 2018, 209, 188-196.	5.6	8

RISHENG DING

#	Article	IF	CITATIONS
55	Stem flow of seed-maize under alternate furrow irrigation and double-row ridge planting in an arid region of Northwest China. Journal of Integrative Agriculture, 2015, 14, 1434-1445.	3.5	7
56	Time lag characteristics of sap flow in seed-maize and their implications for modeling transpiration in an arid region of Northwest China. Journal of Arid Land, 2017, 9, 515-529.	2.3	6
57	Modeling kernel weight of hybrid maize seed production with different water regimes. Agricultural Water Management, 2021, 250, 106851.	5.6	5
58	Plasticity in stomatal behaviour across a gradient of water supply is consistent among fieldâ€grown maize inbred lines with varying stomatal patterning. Plant, Cell and Environment, 2022, 45, 2324-2336.	5.7	5
59	Water-carbon relationships and variations from the canopy to ecosystem scale in a sparse vineyard in the northwest China. Journal of Hydrology, 2021, 600, 126469.	5.4	4
60	Evapotranspiration and Quantitative Partitioning of Spring Maize with Drip Irrigation under Mulch in an Arid Region of Northwestern China. Water (Switzerland), 2021, 13, 3169.	2.7	4
61	Biofertilization with photosynthetic bacteria as a new strategy for mitigating photosynthetic acclimation to elevated CO2 on cherry tomato. Environmental and Experimental Botany, 2022, 194, 104758.	4.2	4
62	How are leaf carbon- and water-related traits coordinated acclimation to elevated CO2 by its anatomy? A case study in tomato. Environmental and Experimental Botany, 2022, 199, 104898.	4.2	3
63	Soil temperature and bacterial diversity regulate the impact of irrigation and fertilization practices on ecosystem respiration. Agronomy Journal, 2021, 113, 2361-2373.	1.8	2
64	Comparison of evapotranspiration and energy partitioning related to main biotic and abiotic controllers in vineyards using different irrigation methods. Frontiers of Agricultural Science and Engineering, 2020, 7, 490.	1.4	2
65	The trade-offs between resistance and resilience of forage stay robust with varied growth potentials under different soil water and salt stress. Science of the Total Environment, 2022, 846, 157421.	8.0	2
66	Alternate partial root-zone irrigation with high irrigation frequency improves root growth and reduces unproductive water loss by apple trees in arid north-west China. Frontiers of Agricultural Science and Engineering, 2018, .	1.4	1
67	Comparison of several models for estimating gross primary production of drip-irrigated maize in arid regions. Ecological Modelling, 2022, 468, 109928.	2.5	0