Rui Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/170694/publications.pdf

Version: 2024-02-01

27	863	16	27
papers	citations	h-index	g-index
27	27	27	1302
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Multi-step polymer degradation kinetics using activation energy-dependent cataluminescence. Green Chemistry, 2022, 24, 2423-2428.	9.0	7
2	Fluorescence Technique Lighting the Particle Migration in Polymers. Macromolecules, 2022, 55, 5840-5848.	4.8	2
3	Fluorescence monitoring of the degradation evolution of aliphatic polyesters. Chemical Communications, 2022, 58, 8818-8821.	4.1	4
4	Three-Dimensional Fluorescent Imaging to Identify Multi-Paths in Polymer Aging. Analytical Chemistry, 2021, 93, 10301-10309.	6.5	6
5	Mass Spectrometry Imaging of Low-Molecular-Weight Phenols Liberated from Plastics. Analytical Chemistry, 2021, 93, 13703-13710.	6.5	3
6	Enhanced photocatalytic performance of heterogeneous hydrotalcite by spontaneously polarized ferroelectric. Journal of Colloid and Interface Science, 2021, 600, 473-479.	9.4	4
7	Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Science Advances, 2020, 6, eaaz6107.	10.3	101
8	Three-Dimensional Visualization for Early-Stage Evolution of Polymer Aging. ACS Central Science, 2020, 6, 771-778.	11.3	19
9	Novel Fluorescence Method for Determination of Spatial Interparticle Distance in Polymer Nanocomposites. Analytical Chemistry, 2020, 92, 7794-7799.	6.5	6
10	Significantly Enhanced Thermoelectric Properties of Organic–Inorganic Hybrids with a Periodically Ordered Structure. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13371-13377.	8.0	23
11	Substrate-Assisted Visualization of Surfactant Micelles via Transmission Electron Microscopy. Frontiers in Chemistry, 2019, 7, 242.	3. 6	3
12	Efficient bacteria inactivation by ligand-induced continuous generation of hydroxyl radicals in Fenton-like reaction. Journal of Hazardous Materials, 2019, 369, 408-415.	12.4	17
13	In situ visualization of hydrophilic spatial heterogeneity inside microfluidic chips by fluorescence microscopy. Lab on A Chip, 2019, 19, 934-940.	6.0	9
14	Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites. Chemical Science, 2018, 9, 218-222.	7.4	21
15	Highly dispersed layered double oxide hollow spheres with sufficient active sites for adsorption of methyl blue. Nanoscale, 2018, 10, 23191-23197.	5. 6	33
16	Monodispersed Ag Nanoparticle in Layered Double Hydroxides as Matrix for Laser Desorption/Ionization Mass Spectrometry. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44751-44759.	8.0	26
17	Spontaneous polarization switching and piezoelectric enhancement of PVDF through strong hydrogen bonds induced by layered double hydroxides. Chemical Communications, 2017, 53, 7933-7936.	4.1	25
18	A luminescent ultrathin film with reversible sensing toward pressure. Chemical Communications, 2016, 52, 4663-4666.	4.1	16

#	Article	IF	CITATION
19	Surface-confined fluorescence enhancement of Au nanoclusters anchoring to a two-dimensional ultrathin nanosheet toward bioimaging. Nanoscale, 2016, 8, 9815-9821.	5. 6	39
20	A targeted agent with intercalation structure for cancer near-infrared imaging and photothermal therapy. RSC Advances, 2016, 6, 16608-16614.	3.6	22
21	Localization of Au Nanoclusters on Layered Double Hydroxides Nanosheets: Confinementâ€Induced Emission Enhancement and Temperatureâ€Responsive Luminescence. Advanced Functional Materials, 2015, 25, 5006-5015.	14.9	167
22	A supramolecular nanovehicle toward systematic, targeted cancer and tumor therapy. Chemical Science, 2015, 6, 5511-5518.	7.4	26
23	Surface enhanced Raman scattering based on Au nanoparticles/layered double hydroxide ultrathin films. Journal of Materials Chemistry C, 2015, 3, 5167-5174.	5. 5	26
24	A Supermolecular Photosensitizer with Excellent Anticancer Performance in Photodynamic Therapy. Advanced Functional Materials, 2014, 24, 3144-3151.	14.9	110
25	Intelligent display films with tunable color emission based on a supermolecular architecture. Journal of Materials Chemistry C, 2013, 1, 5654.	5. 5	16
26	Study on UV-shielding mechanism of layered double hydroxide materials. Physical Chemistry Chemical Physics, 2013, 15, 18217.	2.8	52
27	CdTe Quantum Dots/Layered Double Hydroxide Ultrathin Films with Multicolor Light Emission via Layerâ€by‣ayer Assembly. Advanced Functional Materials, 2012, 22, 4940-4948.	14.9	80