Fabio Bozzoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1706798/publications.pdf

Version: 2024-02-01

44 papers

883 citations

430874 18 h-index 28 g-index

44 all docs 44 docs citations

times ranked

44

537 citing authors

#	Article	IF	CITATIONS
1	Compound convective heat transfer enhancement in helically coiled wall corrugated tubes. International Journal of Heat and Mass Transfer, 2013, 59, 353-362.	4.8	93
2	Experimental investigation on the convective heat transfer in straight and coiled corrugated tubes for highly viscous fluids: Preliminary results. International Journal of Heat and Mass Transfer, 2012, 55, 498-504.	4.8	75
3	Estimation of the local heat-transfer coefficient in the laminar flow regime in coiled tubes by the Tikhonov regularisation method. International Journal of Heat and Mass Transfer, 2014, 72, 352-361.	4.8	69
4	Effect of wall corrugation on local convective heat transfer in coiled tubes. International Journal of Heat and Mass Transfer, 2016, 101, 76-90.	4.8	51
5	Experimental validation of the filtering technique approach applied to the restoration of the heat source field. Experimental Thermal and Fluid Science, 2013, 44, 858-867.	2.7	35
6	An original look into pulsating heat pipes: Inverse heat conduction approach for assessing the thermal behaviour. Thermal Science and Engineering Progress, 2019, 10, 317-326.	2.7	32
7	Thermal characterization of a multi-turn pulsating heat pipe in microgravity conditions: Statistical approach to the local wall-to-fluid heat flux. International Journal of Heat and Mass Transfer, 2021, 169, 120930.	4.8	31
8	Experimental study of the transitional flow regime in coiled tubes by the estimation of local convective heat transfer coefficient. International Journal of Heat and Mass Transfer, 2017, 112, 825-836.	4.8	30
9	Enhanced heat transfer in tubes based on vascular heat exchangers in fish: Experimental investigation. International Journal of Heat and Mass Transfer, 2019, 137, 192-203.	4.8	30
10	Estimation of local heat transfer coefficient in coiled tubes under inverse heat conduction problem approach. Experimental Thermal and Fluid Science, 2014, 59, 246-251.	2.7	29
11	Estimation of the local convective heat transfer coefficient in pipe flow using a 2D thermal Quadrupole model and Truncated Singular Value Decomposition. International Journal of Heat and Mass Transfer, 2015, 91, 1034-1045.	4.8	29
12	Global and local heat transfer behaviour of a three-dimensional Pulsating Heat Pipe: combined effect of the heat load, orientation and condenser temperature. Applied Thermal Engineering, 2021, 195, 117144.	6.0	29
13	Inverse heat transfer modeling applied to the estimation of the apparent thermal conductivity of an intumescent fire retardant paint. Experimental Thermal and Fluid Science, 2018, 90, 143-152.	2.7	27
14	Effect of a Hydrophobic Coating on the Local Heat Transfer Coefficient in Forced Convection under Wet Conditions. Experimental Heat Transfer, 2009, 22, 163-177.	3.2	25
15	Characterization of an uncooled infrared thermographic system suitable for the solution of the 2-D inverse heat conduction problem. Experimental Thermal and Fluid Science, 2008, 32, 1492-1498.	2.7	24
16	Experimental characterization of active magnetic regenerators constructed using laser beam melting technique. Applied Thermal Engineering, 2020, 174, 115297.	6.0	23
17	Wiener filtering technique applied to thermographic data reduction intended for the estimation of plate fins performance. Experimental Thermal and Fluid Science, 2004, 28, 179-183.	2.7	22
18	Comparative application of CGM and Wiener filtering techniques for the estimation of heat flux distribution. Inverse Problems in Science and Engineering, 2011, 19, 551-573.	1.2	20

#	Article	IF	CITATIONS
19	Numerical analysis of convective heat transfer enhancement in swirl tubes. International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21, 559-571.	2.8	15
20	The reciprocity function approach applied to the non-intrusive estimation of spatially varying internal heat transfer coefficients in ducts: numerical and experimental results. International Journal of Heat and Mass Transfer, 2015, 90, 1221-1231.	4.8	15
21	Estimation of the local heat transfer coefficient in coiled tubes. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 575-586.	2.8	15
22	Influence of thermal boundary conditions on local convective heat transfer in coiled tubes. International Journal of Thermal Sciences, 2019, 145, 106039.	4.9	15
23	Finite Element Modeling of Camber Evolution During Sintering of Bilayer Structures. Journal of the American Ceramic Society, 2014, 97, 2965-2972.	3.8	13
24	Functionally Graded Ceramics Fabricated with Sideâ€byâ€Side Tape Casting for Use in Magnetic Refrigeration. International Journal of Applied Ceramic Technology, 2015, 12, 891-898.	2.1	12
25	Filtered reciprocity functional approach to estimate internal heat transfer coefficients in 2D cylindrical domains using infrared thermography. International Journal of Heat and Mass Transfer, 2018, 125, 1181-1195.	4.8	12
26	Natureâ€"Inspired Flow Patterns for Active Magnetic Regenerators Assessed Using a 1D AMR Model. Frontiers in Energy Research, 2019, 7, .	2.3	12
27	Infrared image filtering applied to the restoration of the convective heat transfer coefficient distribution in coiled tubes. Opto-electronics Review, 2015, 23, .	2.4	11
28	Numerical 2-D Modeling of a Coaxial Scraped Surface Heat Exchanger Versus Experimental Results Under the Laminar Flow Regime. Heat Transfer Engineering, 2012, 33, 1120-1129.	1.9	10
29	Numerical estimation of convective heat transfer coefficient through linearization. International Journal of Heat and Mass Transfer, 2016, 102, 1230-1244.	4.8	10
30	Turbulent flow regime in coiled tubes: local heat-transfer coefficient. Heat and Mass Transfer, 2018, 54, 2371-2381.	2.1	9
31	Global and local performances of a tubular micro-pulsating heat pipe: experimental investigation. Heat and Mass Transfer, 2022, 58, 2009-2027.	2.1	9
32	Integration of a magnetocaloric heat pump in a low-energy residential building. Building Simulation, 2018, 11, 753-763.	5.6	8
33	New methods for numerical estimation of convective heat transfer coefficient in circular ducts. International Journal of Thermal Sciences, 2019, 139, 387-402.	4.9	8
34	Experimental investigation on the convective heat transfer enhancement for highly viscous fluids in helical coiled corrugated tubes. Journal of Physics: Conference Series, 2012, 395, 012032.	0.4	7
35	Experimental estimation of the local heat-transfer coefficient in coiled tubes in turbulent flow regime. Journal of Physics: Conference Series, 2016, 745, 032034.	0.4	5
36	A novel method for estimating the distribution of convective heat flux in ducts: Gaussian filtered singular value decomposition. Inverse Problems in Science and Engineering, 2019, 27, 1595-1607.	1.2	5

#	Article	IF	CITATIONS
37	Characterisation of the heat transfer in displaced enhancement devices by means of inverse problem approach applied to IR images. Quantitative InfraRed Thermography Journal, 2021, 18, 108-126.	4.2	5
38	Internal heat transfer coefficient estimation in three-dimensional ducts through the reciprocity functional approach – An analytical approach and validation with experimental data. International Journal of Heat and Mass Transfer, 2018, 122, 587-601.	4.8	4
39	Application of an improved parameter estimation approach to characterize enhanced heat exchangers. International Journal of Heat and Mass Transfer, 2020, 147, 118886.	4.8	4
40	Inverse estimation of the local heat transfer coefficient in curved tubes: a numerical validation. Journal of Physics: Conference Series, 2014, 501, 012002.	0.4	2
41	CFD-Simulation Assisted Design of Elastocaloric Regenerator Geometry. Sustainability, 2020, 12, 9013.	3.2	2
42	Numerical analysis of the laminar forced convective heat transfer in coiled tubes with periodic ring-type corrugation. Journal of Physics: Conference Series, 2016, 745, 032072.	0.4	1
43	Non-intrusive Estimate of Spatially Varying Internal Heat Flux in Coiled Ducts: Method of Fundamental Solutions Applied to the Reciprocity Functional Approach. SEMA SIMAI Springer Series, 2020, , 139-155.	0.7	0
44	Numerical simulation of the heat transfer process of a coiled tube for viscous fluids. Case Studies in Thermal Engineering, 2022, 36, 102186.	5.7	0