

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1706748/publications.pdf Version: 2024-02-01

CANC YU

#	Article	IF	CITATIONS
1	Ferroelectric perovskiteâ€type films with robust inâ€plane polarization toward efficient room-temperature chemiresistive sensing. Fundamental Research, 2023, 3, 362-368.	1.6	9
2	High-Hole-Mobility Metal–Organic Framework as Dopant-Free Hole Transport Layer for Perovskite Solar Cells. Nanoscale Research Letters, 2022, 17, 6.	3.1	7
3	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
4	Fluorescence sensing of nitrophenol explosives using a two-dimensional organic–metal chalcogenide fully covered with functional groups. Chemical Communications, 2022, 58, 4615-4618.	2.2	5
5	Layered Organic Metal Chalcogenides (OMCs): From Bulk to Twoâ€Dimensional Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
6	Layered Organic Metal Chalcogenides (OMCs): From Bulk to Twoâ€Dimensional Materials. Angewandte Chemie, 2022, 134, .	1.6	3
7	<i>In situ</i> Alkylation Regulation of the Structure and Properties of Inorganic-Organic Hybrid Perovskite-Like Materials [※] . Acta Chimica Sinica, 2022, 80, 460.	0.5	1
8	Crystalline microporous small molecule semiconductors based on porphyrin for high-performance chemiresistive gas sensing. Journal of Materials Chemistry A, 2022, 10, 12977-12983.	5.2	10
9	Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Research, 2021, 14, 438-443.	5.8	54
10	MOFâ€Directed Synthesis of Crystalline Ionic Liquids with Enhanced Proton Conduction. Angewandte Chemie, 2021, 133, 1310-1317.	1.6	4
11	MOFâ€Directed Synthesis of Crystalline Ionic Liquids with Enhanced Proton Conduction. Angewandte Chemie - International Edition, 2021, 60, 1290-1297.	7.2	110
12	Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coordination Chemistry Reviews, 2021, 426, 213479.	9.5	145
13	A proton conductor showing an indication of single-ion magnet behavior based on a mononuclear Dy(<scp>iii</scp>) complex. Journal of Materials Chemistry C, 2021, 9, 481-488.	2.7	21
14	Ultra-stable 2D cuprofullerene imidazolate polymer as a high-performance visible-light photodetector. Science China Materials, 2021, 64, 1563-1569.	3.5	10
15	The exceptionally high moisture responsiveness of a new conductive-coordination-polymer based chemiresistive sensor. CrystEngComm, 2021, 23, 3549-3556.	1.3	7
16	Boosting Room Temperature Sensing Performances by Atomically Dispersed Pd Stabilized via Surface Coordination. ACS Sensors, 2021, 6, 1103-1110.	4.0	16
17	MOF Nanosheet Reconstructed Twoâ€Ðimensional Bionic Nanochannel for Protonic Fieldâ€Effect Transistors. Angewandte Chemie, 2021, 133, 10019-10023.	1.6	6
18	MOF Nanosheet Reconstructed Twoâ€Dimensional Bionic Nanochannel for Protonic Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2021, 60, 9931-9935.	7.2	51

#	Article	IF	CITATIONS
19	A Covalent Organic–Inorganic Hybrid Superlattice Covered with Organic Functional Groups for Highly Sensitive and Selective Gas Sensing. Angewandte Chemie, 2021, 133, 19862-19866.	1.6	7
20	A Covalent Organic–Inorganic Hybrid Superlattice Covered with Organic Functional Groups for Highly Sensitive and Selective Gas Sensing. Angewandte Chemie - International Edition, 2021, 60, 19710-19714.	7.2	32
21	Layerâ€byâ€Layer Growth of Preferredâ€Oriented MOF Thin Film on Nanowire Array for Highâ€Performance Chemiresistive Sensing. Angewandte Chemie - International Edition, 2021, 60, 25758-25761.	7.2	83
22	Layerâ€byâ€layer Growth of Preferredâ€Oriented MOF Thin Film on Nanowire Array for Highâ€Performance Chemiresistive Sensing. Angewandte Chemie, 2021, 133, 25962.	1.6	2
23	A New Corner-Shared 1D Hybrid Lead Halide: Broad-Band Photoluminescence and Semiconductive Properties. Inorganic Chemistry Communication, 2021, , 109042.	1.8	3
24	A Dualâ€Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity. Angewandte Chemie - International Edition, 2020, 59, 172-176.	7.2	124
25	A Dualâ€Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity. Angewandte Chemie, 2020, 132, 178-182.	1.6	8
26	A hydrophobic semiconducting metal–organic framework assembled from silver chalcogenide wires. Chemical Communications, 2020, 56, 2091-2094.	2.2	22
27	Superprotonic conductivity of Ti-based MOFs with BrÃֻnsted acid–base pairs. Inorganica Chimica Acta, 2020, 502, 119317.	1.2	12
28	Synergistic photoredox and copper catalysis by diode-like coordination polymer with twisted and polar copper–dye conjugation. Nature Communications, 2020, 11, 5384.	5.8	34
29	Conductive MOFs. EnergyChem, 2020, 2, 100029.	10.1	264
30	An air-stable anionic two-dimensional semiconducting metal-thiolate network and its exfoliation into ultrathin few-layer nanosheets. Chemical Communications, 2020, 56, 3645-3648.	2.2	13
31	Coordination assembly of 2D ordered organic metal chalcogenides with widely tunable electronic band gaps. Nature Communications, 2020, 11, 261.	5.8	52
32	Organic "receptor―fully covered few-layer organic–metal chalcogenides for high-performance chemiresistive gas sensing at room temperature. Chemical Communications, 2020, 56, 5366-5369.	2.2	29
33	Flexible Porous Organic Polymer Membranes for Protonic Fieldâ€Effect Transistors. Advanced Materials, 2020, 32, e2000730.	11.1	47
34	A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. Journal of Materials Chemistry A, 2020, 8, 9085-9090.	5.2	42
35	Atomically Precise Titanium–Oxo Nanotube with Selective Water Adsorption and Semiconductive Behaviors. CCS Chemistry, 2020, 2, 209-215.	4.6	14
36	Single-Component MLCT-Active Photodetecting Material Based on a Two-Dimensional Coordination Polymer. CCS Chemistry, 2020, 2, 655-662.	4.6	19

#	Article	IF	CITATIONS
37	2D metal chalcogenides with surfaces fully covered with an organic "promoter―for high-performance biomimetic catalysis. Chemical Communications, 2019, 55, 10444-10447.	2.2	19
38	Van der Waals Heterostructured MOFâ€onâ€MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing. Angewandte Chemie, 2019, 131, 15057-15061.	1.6	45
39	Gas transport regulation in a MO/MOF interface for enhanced selective gas detection. Journal of Materials Chemistry A, 2019, 7, 18397-18403.	5.2	44
40	Van der Waals Heterostructured MOFâ€onâ€MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing. Angewandte Chemie - International Edition, 2019, 58, 14915-14919.	7.2	186
41	Innenrücktitelbild: Van der Waals Heterostructured MOFâ€onâ€MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing (Angew. Chem. 42/2019). Angewandte Chemie, 2019, 131, 15303-15303.	1.6	2
42	[Ba ₁₃ Sb ₃₆ Cl ₃₄ O ₅₄] ^{8â^'} : high-nuclearity cluster for the assembly of nanocluster-based compounds. Chemical Communications, 2019, 55, 7442-7445.	2.2	7
43	Tunable electrical conductivity of a new 3D MOFs: Cu-TATAB. Inorganic Chemistry Communication, 2019, 105, 119-124.	1.8	23
44	Metal-organic framework nanosheets: Preparation and applications. Coordination Chemistry Reviews, 2019, 388, 79-106.	9.5	167
45	Conductive metal–organic framework nanowire arrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 10431-10438.	5.2	115
46	From Lead Iodide to a Radical Form Leadâ€lodide Superlattice: High Conductance Gain and Broader Band for Photoconductive Response. Angewandte Chemie - International Edition, 2019, 58, 2692-2695.	7.2	34
47	Design Strategy for Improving Optical and Electrical Properties and Stability of Lead-Halide Semiconductors. Journal of the American Chemical Society, 2018, 140, 2805-2811.	6.6	210
48	Semiconductive 1D nanobelt iodoplumbate hybrid with high humidity response. Inorganic Chemistry Communication, 2018, 93, 42-46.	1.8	9
49	Batteries: Largeâ€Area Preparation of Crackâ€Free Crystalline Microporous Conductive Membrane to Upgrade High Energy Lithium–Sulfur Batteries (Adv. Energy Mater. 31/2018). Advanced Energy Materials, 2018, 8, 1870136.	10.2	3
50	Largeâ€Area Preparation of Crackâ€Free Crystalline Microporous Conductive Membrane to Upgrade High Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802052.	10.2	159
51	Electrical bistability in a metal–organic framework modulated by reversible crystalline-to-amorphous transformations. Chemical Communications, 2017, 53, 2479-2482.	2.2	35
52	Production of Primary Amines by Reductive Amination of Biomassâ€Derived Aldehydes/Ketones. Angewandte Chemie - International Edition, 2017, 56, 3050-3054.	7.2	243
53	Highly Anisotropic and Water Molecule-Dependent Proton Conductivity in a 2D Homochiral Copper(II) Metal–Organic Framework. Chemistry of Materials, 2017, 29, 2321-2331.	3.2	77
54	Production of Primary Amines by Reductive Amination of Biomassâ€Derived Aldehydes/Ketones. Angewandte Chemie, 2017, 129, 3096-3100.	1.6	64

#	Article	IF	CITATIONS
55	Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol. ChemSusChem, 2017, 10, 1390-1394.	3.6	73
56	A semiconducting gyroidal metal-sulfur framework for chemiresistive sensing. Journal of Materials Chemistry A, 2017, 5, 16139-16143.	5.2	44
57	A Metal–Organic Framework Impregnated with a Binary Ionic Liquid for Safe Proton Conduction above 100 °C. Chemistry - A European Journal, 2017, 23, 1248-1252.	1.7	89
58	Conductive Metal–Organic Framework Nanowire Array Electrodes for Highâ€Performance Solidâ€State Supercapacitors. Advanced Functional Materials, 2017, 27, 1702067.	7.8	490
59	Layerâ€by‣ayer Assembled Conductive Metal–Organic Framework Nanofilms for Roomâ€Temperature Chemiresistive Sensing. Angewandte Chemie - International Edition, 2017, 56, 16510-16514.	7.2	424
60	Layerâ€byâ€Layer Assembled Conductive Metal–Organic Framework Nanofilms for Roomâ€Temperature Chemiresistive Sensing. Angewandte Chemie, 2017, 129, 16737-16741.	1.6	98
61	A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nature Energy, 2017, 2, 877-883.	19.8	563
62	Covalent Organic Gels: Inorganic Acidâ€Impregnated Covalent Organic Gels as Highâ€Performance Protonâ€Conductive Materials at Subzero Temperatures (Adv. Funct. Mater. 32/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
63	Inorganic Acidâ€Impregnated Covalent Organic Gels as Highâ€Performance Proton onductive Materials at Subzero Temperatures. Advanced Functional Materials, 2017, 27, 1701465.	7.8	80
64	Supercapacitors: Conductive Metal–Organic Framework Nanowire Array Electrodes for Highâ€Performance Solid‣tate Supercapacitors (Adv. Funct. Mater. 27/2017). Advanced Functional Materials, 2017, 27, .	7.8	3
65	A new 3D cupric coordination polymer as chemiresistor humidity sensor: narrow hysteresis, high sensitivity, fast response and recovery. Science China Chemistry, 2017, 60, 1197-1204.	4.2	27
66	Constructing semiconductive crystalline microporous materials by Coulomb interactions. Journal of Materials Chemistry A, 2017, 5, 18409-18413.	5.2	23
67	Porous Field-Effect Transistors Based on a Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 1360-1363.	6.6	374
68	Crystalline, Highly Oriented MOF Thin Film: the Fabrication and Application. Chemical Record, 2017, 17, 518-534.	2.9	34
69	Innentitelbild: Layerâ€byâ€Layer Assembled Conductive Metal–Organic Framework Nanofilms for Roomâ€Temperature Chemiresistive Sensing (Angew. Chem. 52/2017). Angewandte Chemie, 2017, 129, 16638-16638.	1.6	0
70	Semiconductive Nanotube Array Constructed from Giant [Pb ^{II} ₁₈ I ₅₄ (I ₂) ₉] Wheel Clusters. Angewandte Chemie - International Edition, 2016, 55, 514-518.	7.2	98
71	MOF Thin Film oated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance. Advanced Materials, 2016, 28, 5229-5234.	11.1	492
72	Frontispiece: Semiconductive Nanotube Array Constructed from Giant [Pb ^{II} ₁₈ I ₅₄ (I ₂) ₉] Wheel Clusters. Angewandte Chemie - International Edition, 2016, 55, .	7.2	0

#	Article	IF	CITATIONS
73	Lanthanide–Potassium Biphenyl-3,3′-disulfonyl-4,4′-dicarboxylate Frameworks: Gas Sorption, Proton Conductivity, and Luminescent Sensing of Metal Ions. Inorganic Chemistry, 2016, 55, 6271-6277.	1.9	141
74	A new azodioxy-linked porphyrin-based semiconductive covalent organic framework with I ₂ doping-enhanced photoconductivity. CrystEngComm, 2016, 18, 4259-4263.	1.3	70
75	40-Fold Enhanced Intrinsic Proton Conductivity in Coordination Polymers with the Same Proton-Conducting Pathway by Tuning Metal Cation Nodes. Inorganic Chemistry, 2016, 55, 983-986.	1.9	68
76	Semiconductive 3-D haloplumbate framework hybrids with high color rendering index white-light emission. Chemical Science, 2015, 6, 7222-7226.	3.7	172
77	Diplex single-crystal-to-single-crystal transformation by different inducement. CrystEngComm, 2013, 15, 2579.	1.3	23
78	Superprotonic Conductivity in a Highly Oriented Crystalline Metal–Organic Framework Nanofilm. Journal of the American Chemical Society, 2013, 135, 7438-7441.	6.6	300
79	Facile "Modular Assembly―for Fast Construction of a Highly Oriented Crystalline MOF Nanofilm. Journal of the American Chemical Society, 2012, 134, 16524-16527.	6.6	295
80	A novel inorganic–organic hybrid for detection of nitrite anions with extremely high sensitivity and selectivity. Journal of Materials Chemistry, 2012, 22, 16742.	6.7	30
81	Temperature Induced Interpenetration Suppression of a Couple of Azoâ€based Isomers with a Flexible Second Ligand. Chinese Journal of Chemistry, 2012, 30, 791-797.	2.6	7
82	Structures and photoluminescence of zinc(ii) coordination polymers based on in situ generated 1H-tetrazolate-5-propionic acid ligands. CrystEngComm, 2011, 13, 6386.	1.3	49
83	Photochromic inorganic–organic hybrid: a new approach for switchable photoluminescence in the solid state and partial photochromic phenomenon. Dalton Transactions, 2010, 39, 8688.	1.6	81
84	A ferroelectric inorganic–organic hybrid based on NLO-phore stilbazolium. Journal of Materials Chemistry, 2009, 19, 2179.	6.7	95
85	Photochromism of a Methyl Viologen Bismuth(III) Chloride: Structural Variation Before and After UV Irradiation. Angewandte Chemie - International Edition, 2007, 46, 3249-3251.	7.2	331
86	The Synthesis, Crystal and Band Structures, and Properties of the Quaternary Supramolecular Complexes [Hg6Z4](MX6)Hgy (Z = As, Sb; M = Hg, Cd; X = Cl, Br, I;y = 0, 0.5, 0.6). European Journal of Inorganic Chemistry, 2007, 2007, 977-984.	1.0	16
87	Comparison of the temperature dependence of optical poling between guest-host and side-chain polymer films. Journal of Applied Physics, 1999, 85, 681-685.	1.1	27
88	Third-order optical nonlinearity of the carbon nanotubes. Applied Physics Letters, 1999, 74, 164-166.	1.5	147
89	Functional Linkers for Electron-Conducting MOFs. , 0, , 421-462.		1
90	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie, 0, , .	1.6	13

	Gano	Gang Xu		
#	Article	IF	CITATIONS	
91	Cascading Photoelectric Detecting and Chemiresistive Gasâ€Sensing Properties of Pb ₅ S ₂ I ₆ Nanowire Mesh for Multiâ€Factor Accurate Fire Alarm. Small Methods, 0, 2200470.	, 4.6	3	