
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1706700/publications.pdf Version: 2024-02-01

AMY S LOPDAN

#	Article	IF	CITATIONS
1	Adult obstructive sleep apnoea. Lancet, The, 2014, 383, 736-747.	13.7	1,031
2	Defining Phenotypic Causes of Obstructive Sleep Apnea. Identification of Novel Therapeutic Targets. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 996-1004.	5.6	823
3	Central Sleep Apnea. Chest, 2007, 131, 595-607.	0.8	453
4	Ventilatory Control and Airway Anatomy in Obstructive Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 1225-1232.	5.6	276
5	The Influence of Aging on Pharyngeal Collapsibility During Sleep. Chest, 2007, 131, 1702-1709.	0.8	238
6	Treating Obstructive Sleep Apnea with Hypoglossal Nerve Stimulation. Sleep, 2011, 34, 1479-1486.	1.1	229
7	Effect of oxygen in obstructive sleep apnea: Role of loop gain. Respiratory Physiology and Neurobiology, 2008, 162, 144-151.	1.6	208
8	A method for measuring and modeling the physiological traits causing obstructive sleep apnea. Journal of Applied Physiology, 2011, 110, 1627-1637.	2.5	204
9	Lung Volume and Continuous Positive Airway Pressure Requirements in Obstructive Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 114-117.	5.6	185
10	Aging and Sleep: Physiology and Pathophysiology. Seminars in Respiratory and Critical Care Medicine, 2010, 31, 618-633.	2.1	165
11	Effect of increased lung volume on sleep disordered breathing in patients with sleep apnoea. Thorax, 2006, 61, 435-439.	5.6	162
12	Gender differences in sleep apnea: epidemiology, clinical presentation and pathogenic mechanisms. Sleep Medicine Reviews, 2003, 7, 377-389.	8.5	151
13	Mechanisms of Apnea. Progress in Cardiovascular Diseases, 2009, 51, 313-323.	3.1	149
14	Airway Dilator Muscle Activity and Lung Volume During Stable Breathing in Obstructive Sleep Apnea. Sleep, 2009, 32, 361-368.	1.1	147
15	Respiratory control stability and upper airway collapsibility in men and women with obstructive sleep apnea. Journal of Applied Physiology, 2005, 99, 2020-2027.	2.5	141
16	Upper Airway Collapsibility (Pcrit) and Pharyngeal Dilator Muscle Activity are Sleep Stage Dependent. Sleep, 2016, 39, 511-521.	1.1	129
17	The Influence of Obstructive Sleep Apnea and Gender on Genioglossus Activity During Rapid Eye Movement Sleep. Chest, 2009, 135, 957-964.	0.8	113
18	An Integrative Model of Physiological Traits Can be Used to Predict Obstructive Sleep Apnea and Response to Non Positive Airway Pressure Therapy. Sleep, 2015, 38, 961-70.	1.1	110

#	Article	IF	CITATIONS
19	Mechanisms used to restore ventilation after partial upper airway collapse during sleep in humans. Thorax, 2007, 62, 861-867.	5.6	108
20	The influence of end-expiratory lung volume on measurements of pharyngeal collapsibility. Journal of Applied Physiology, 2010, 108, 445-451.	2.5	104
21	Enhanced Upper-Airway Muscle Responsiveness Is a Distinct Feature of Overweight/Obese Individuals without Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 930-937.	5.6	104
22	Discharge Patterns of Human Genioglossus Motor Units During Sleep Onset. Sleep, 2008, 31, 525-533.	1.1	100
23	Pharyngeal motor control and the pathogenesis of obstructive sleep apnea. Respiratory Physiology and Neurobiology, 2008, 160, 1-7.	1.6	97
24	Neurogenic Changes in the Upper Airway of Patients with Obstructive Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 322-329.	5.6	97
25	Trazodone increases arousal threshold in obstructive sleep apnoea. European Respiratory Journal, 2008, 31, 1308-1312.	6.7	94
26	Unwarranted Administration of Acetylcholinesterase Inhibitors Can Impair Genioglossus and Diaphragm Muscle Function. Anesthesiology, 2007, 107, 621-629.	2.5	87
27	Ventilatory Response to Brief Arousal from Non–Rapid Eye Movement Sleep Is Greater in Men Than in Women. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 1512-1519.	5.6	84
28	Arousal Intensity is a Distinct Pathophysiological Trait in Obstructive Sleep Apnea. Sleep, 2016, 39, 2091-2100.	1.1	82
29	Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea. Journal of Applied Physiology, 2011, 111, 1644-1653.	2.5	80
30	Genioglossal Muscle Response to CO2 Stimulation During NREM Sleep. Sleep, 2006, 29, 470-477.	1.1	78
31	Neostigmine but not sugammadex impairs upper airway dilator muscle activity and breathing. British Journal of Anaesthesia, 2008, 101, 344-349.	3.4	78
32	The influence of gender and upper airway resistance on the ventilatory response to arousal in obstructive sleep apnoea in humans. Journal of Physiology, 2004, 558, 993-1004.	2.9	76
33	Termination of Respiratory Events with and without Cortical Arousal in Obstructive Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1183-1191.	5.6	76
34	Influence of wakefulness on pharyngeal airway muscle activity. Thorax, 2007, 62, 799-805.	5.6	75
35	Physiological Mechanisms of Upper Airway Hypotonia during REM Sleep. Sleep, 2014, 37, 561-569.	1.1	73
36	Sleep and cardiovascular regulation. Pflugers Archiv European Journal of Physiology, 2012, 463, 161-168.	2.8	72

#	Article	IF	CITATIONS
37	Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD. Thorax, 2002, 57, 533-539.	5.6	69
38	Obstructive sleep apnoea pathogenesis from mild to severe: Is it all the same?. Respirology, 2017, 22, 33-42.	2.3	64
39	Therapeutic CPAP Level Predicts Upper Airway Collapsibility in Patients With Obstructive Sleep Apnea. Sleep, 2017, 40, .	1.1	62
40	The effect of increased genioglossus activity and end-expiratory lung volume on pharyngeal collapse. Journal of Applied Physiology, 2010, 109, 469-475.	2.5	50
41	Chemical control stability in the elderly. Journal of Physiology, 2007, 581, 291-298.	2.9	49
42	Recruitment and rate-coding strategies of the human genioglossus muscle. Journal of Applied Physiology, 2010, 109, 1939-1949.	2.5	48
43	Physiology of Arousal in Obstructive Sleep Apnea and Potential Impacts for Sedative Treatment. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 814-821.	5.6	47
44	Differential Effects of Isoflurane and Propofol on Upper Airway Dilator Muscle Activity and Breathing. Anesthesiology, 2008, 108, 897-906.	2.5	46
45	Sleeping tongue: current perspectives of genioglossus control in healthy individuals and patients with obstructive sleep apnea. Nature and Science of Sleep, 2018, Volume 10, 169-179.	2.7	45
46	Discharge Patterns of Human Genioglossus Motor Units during Arousal from Sleep. Sleep, 2010, 33, 379-387.	1.1	44
47	Obstructive Sleep Apnea and Aging Effects on Macrovascular and Microcirculatory Function. Sleep, 2010, 33, 1177-1183.	1.1	42
48	A Novel Model to Estimate Key Obstructive Sleep Apnea Endotypes from Standard Polysomnography and Clinical Data and Their Contribution to Obstructive Sleep Apnea Severity. Annals of the American Thoracic Society, 2021, 18, 656-667.	3.2	42
49	A Mechanism for Upper Airway Stability during Slow Wave Sleep. Sleep, 2013, 36, 555-563.	1.1	41
50	Motor Unit Recruitment in Human Genioglossus Muscle in Response to Hypercapnia. Sleep, 2010, 33, 1529-1538.	1.1	36
51	Heart Rate Response to Respiratory Events With or Without Leg Movements. Sleep, 2006, 29, 553-556.	1.1	35
52	Pentobarbital Dose-dependently Increases Respiratory Genioglossus Muscle Activity while Impairing Diaphragmatic Function in Anesthetized Rats. Anesthesiology, 2009, 110, 1327-1334.	2.5	28
53	Discharge Patterns of Human Tensor Palatini Motor Units During Sleep Onset. Sleep, 2012, 35, 699-707.	1.1	27
54	Genioglossus reflex responses to negative upper airway pressure are altered in people with tetraplegia and obstructive sleep apnoea. Journal of Physiology, 2018, 596, 2853-2864.	2.9	27

#	Article	IF	CITATIONS
55	Upper Airway Myopathy is Not Important in the Pathophysiology of Obstructive Sleep Apnea. Journal of Clinical Sleep Medicine, 2007, 03, 570-573.	2.6	27
56	Cardiac changes during arousals from non-REM sleep in healthy volunteers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1320-R1327.	1.8	25
57	Effect of Expiratory Positive Airway Pressure on Sleep Disordered Breathing. Sleep, 2008, 31, 429-432.	1.1	25
58	Effects of pentobarbital on upper airway patency during sleep. European Respiratory Journal, 2010, 36, 569-576.	6.7	25
59	Recent advances in understanding the pathogenesis of obstructive sleep apnea. Current Opinion in Pulmonary Medicine, 2003, 9, 459-464.	2.6	24
60	Nasal Resistance Is Elevated in People with Tetraplegia and Is Reduced by Topical Sympathomimetic Administration. Journal of Clinical Sleep Medicine, 2016, 12, 1487-1492.	2.6	23
61	Mild Airflow Limitation during N2 Sleep Increases K-complex Frequency and Slows Electroencephalographic Activity. Sleep, 2016, 39, 541-550.	1.1	22
62	Sleep and fear conditioning, extinction learning and extinction recall: A systematic review and meta-analysis of polysomnographic findings. Sleep Medicine Reviews, 2021, 59, 101501.	8.5	22
63	Motor Unit Recruitment in Human Genioglossus Muscle in Response to Hypercapnia. Sleep, 2010, 33, 1529-1538.	1.1	22
64	Health Risks and Potential Predictors of Fatigue and Sleepiness in Airline Cabin Crew. International Journal of Environmental Research and Public Health, 2021, 18, 13.	2.6	20
65	Crossed motor innervation of the base of human tongue. Journal of Neurophysiology, 2015, 113, 3499-3510.	1.8	19
66	A secondary reflex suppression phase is present in genioglossus but not tensor palatini in response to negative upper airway pressure. Journal of Applied Physiology, 2010, 108, 1619-1624.	2.5	18
67	High nasal resistance is stable over time but poorly perceived in people with tetraplegia and obstructive sleep apnoea. Respiratory Physiology and Neurobiology, 2017, 235, 27-33.	1.6	17
68	Discharge properties of upper airway motor units during wakefulness and sleep. Progress in Brain Research, 2014, 212, 59-75.	1.4	16
69	Arousal from Sleep Does Not Lead to Reduced Dilator Muscle Activity or Elevated Upper Airway Resistance on Return to Sleep in Healthy Individuals. Sleep, 2015, 38, 53-59.	1.1	16
70	Motor unit recruitment in human genioglossus muscle in response to hypercapnia. Sleep, 2010, 33, 1529-38.	1.1	16
71	The importance of arousal in obstructive sleep apnea—updates from the American Thoracic Society 2016. Journal of Thoracic Disease, 2016, 8, S542-S544.	1.4	14
72	New insights into the timing and potential mechanisms of respiratory-induced cortical arousals in obstructive sleep apnea. Sleep, 2018, 41, .	1.1	14

#	Article	IF	CITATIONS
73	Mechanisms of the deep, slow-wave, sleep-related increase of upper airway muscle tone in healthy humans. Journal of Applied Physiology, 2017, 122, 1304-1312.	2.5	13
74	Sensory detection of threshold intensity resistive loads in severe obstructive sleep apnoea. Respiratory Physiology and Neurobiology, 2017, 236, 29-41.	1.6	11
75	An assessment of a simple clinical technique to estimate pharyngeal collapsibility in people with obstructive sleep apnea. Sleep, 2020, 43, .	1.1	11
76	Upper airway myopathy is not important in the pathophysiology of obstructive sleep apnea. Journal of Clinical Sleep Medicine, 2007, 3, 570-3.	2.6	11
77	Motor unit activity in upper airway muscles genioglossus and tensor palatini. Respiratory Physiology and Neurobiology, 2013, 188, 362-369.	1.6	10
78	Reflex Tachycardia with Airway Opening in Obstructive Sleep Apnea. Sleep, 2013, 36, 819-821.	1.1	9
79	Arousal-Induced Hypocapnia Does Not Reduce Genioglossus Activity in Obstructive Sleep Apnea. Sleep, 2017, 40, .	1.1	9
80	The independent effects of sleep deprivation and sleep fragmentation on processing of emotional information. Behavioural Brain Research, 2022, 424, 113802.	2.2	8
81	Inspiratory-resistive loading increases the ventilatory response to arousal but does not reduce genioglossus muscle activity on the return to sleep. Journal of Applied Physiology, 2012, 113, 909-916.	2.5	7
82	Reply: Arousal Threshold in Obstructive Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 373-374.	5.6	7
83	Common drive to the upper airway muscle genioglossus during inspiratory loading. Journal of Neurophysiology, 2015, 114, 2883-2892.	1.8	7
84	The effect of sex and body weight on lung volumes during sleep. Sleep, 2019, 42, .	1.1	7
85	A randomised controlled trial of nasal decongestant to treat obstructive sleep apnoea in people with cervical spinal cord injury. Spinal Cord, 2019, 57, 579-585.	1.9	7
86	Genioglossus muscle responses to resistive loads in severe OSA patients and healthy control subjects. Journal of Applied Physiology, 2019, 127, 1586-1598.	2.5	6
87	The effect of body mass and sex on the accuracy of respiratory magnetometers for measurement of end-expiratory lung volumes. Journal of Applied Physiology, 2016, 121, 1169-1177.	2.5	5
88	The Effects of Experimental Sleep Fragmentation and Sleep Deprivation on the Response of the Genioglossus Muscle to Inspiratory Resistive Loads. Journal of Clinical Sleep Medicine, 2018, 14, 715-724.	2.6	5
89	After-discharge in the upper airway muscle genioglossus following brief hypoxia. Sleep, 2021, 44, .	1.1	5
90	The Influence of CO2 on Genioglossus Muscle After-Discharge Following Arousal From Sleep. Sleep, 2017, 40, .	1.1	4

#	Article	IF	CITATIONS
91	An observational study of the association between sleep disturbance, fatigue and cognition in the post-acute period after mild traumatic brain injury in prospectively studied premorbidly healthy adults. Neuropsychological Rehabilitation, 2021, 31, 1444-1465.	1.6	4
92	Muscling Up Pharyngeal Airflow,. Chest, 2021, 159, 912-914.	0.8	3
93	Activation of the Upper Airway Dilator Muscle Genioglossus during Sleep Is Largely Dependent on an Interaction between Chemical Drive and Mechanoreceptor Feedback. Sleep, 2011, 34, 983-984.	1.1	2
94	Feasibility of cardiovascular risk and sleep health screening in the transport industry. Journal of Transport and Health, 2020, 18, 100878.	2.2	2
95	Feasibility Of Hypoglossal Nerve Stimulation Therapy To Treat Obstructive Sleep Apnea. , 2010, , .		1
96	Characterization Of Pathophysiological Phenotypic Traits In Obstructive Sleep Apnea: Avenues For Novel Treatment Strategies. , 2011, , .		1
97	Hypoglossal Nerve Stimulation Therapy To Treat Obstructive Sleep Apnea: Interim Feasibility Trial Results. , 2011, , .		1
98	Common Drive in Hypoglossal and Trigeminal Motor Neurons. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1280-1280.	5.6	1
99	The effect of body position on maternal cardiovascular function during sleep and wakefulness in late pregnancy. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 2545-2554.	1.5	1
100	Airway Dilator Muscle Activity and Lung Volume During Stable Breathing in Obstructive Sleep Apnea. Sleep, 2009, , .	1.1	1
101	Effect of CPAP and Lung Volume on Obstructive Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1350-1351.	5.6	0
102	Discharge Patterns Of Tensor Palatini Motor Units During Sleep Onset. , 2010, , .		0
103	Lung Volume During Wake And Sleep In Obstructive Sleep Apnea (OSA). , 2011, , .		0
104	Sleep Deprivation Impairs Genioglossus Muscle Responsiveness. , 2011, , .		0
105	Unified research across the Asia-Pacific region. Sleep and Biological Rhythms, 2014, 12, 149-149.	1.0	0
106	>Does Nasal Obstruction Induce Obstructive Sleep Apnea in Healthy Women?. Nature and Science of Sleep, 2020, Volume 12, 347-355.	2.7	0
107	Anesthetic effects on phasic genioglossus activity and the negative pressure reflex in the rat. FASEB Journal, 2007, 21, A1294.	0.5	0
108	The pharyngeal lumen: both length and size matter. Journal of Clinical Sleep Medicine, 2005, 1, 264-5.	2.6	0

#	Article	IF	CITATIONS
109	Dreaming of New Obstructive Sleep Apnea Treatments. American Journal of Respiratory and Critical Care Medicine, 2021, , .	5.6	0