Sajid Bashir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/170642/publications.pdf

Version: 2024-02-01

		471509	330143
61	1,464 citations	17	37
papers	citations	h-index	g-index
63	63	63	2186
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficient removal of direct yellow dye using chitosan crosslinked isovanillin derivative biopolymer utilizing triboelectric energy produced from homogeneous catalysis. Catalysis Today, 2022, 400-401, 132-145.	4.4	8
2	Preparation of TiB2–SiC composites toughened with interlocking microstructure by self-assembled TiB2 plates. Ceramics International, 2022, 48, 5119-5129.	4.8	5
3	Performance of ferroelectric visible light type II Ag10Si4O13/TiO2 heterojunction photocatalyst. Catalysis Today, 2022, 400-401, 146-158.	4.4	8
4	Perspective on advanced nanomaterials used for energy storage and conversion. Pure and Applied Chemistry, 2022, 94, 959-981.	1.9	0
5	3D Conducting Polymeric Membrane and Scaffold <i>Saccharomyces cerevisiae</i> Biofilms to Enhance Energy Conversion in Microbial Fuel Cells. ACS Applied Materials & Enterfaces, 2022, 14, 20393-20403.	8.0	1
6	Electrocatalysts for direct methanol fuel cells to demonstrate China's renewable energy renewable portfolio standards within the framework of the 13th five-year plan. Catalysis Today, 2021, 374, 135-153.	4.4	12
7	Microbial Fuel Cells: Design and Evaluation of Catalysts and Device. , 2021, , 681-764.		1
8	Silver-Modified Ba _{1â€"<i>x</i>} Co _{0.7} Fe _{0.2} Nb _{0.1} O _{3â~δ} Perovskite Performing as a Cathodic Catalyst of Intermediate-Temperature Solid Oxide Fuel Cells. ACS Applied Materials & Diterfaces, 2020, 12, 9421-9433.	8.0	19
9	Conversion of extracted titanium tailing and waste glass to value-added porous glass ceramic with improved performances. Journal of Environmental Management, 2020, 261, 110197.	7.8	20
10	Metal-organic frameworks and exemplified cytotoxicity evaluation. , 2020, , 347-381.		1
10	Metal-organic frameworks and exemplified cytotoxicity evaluation., 2020,, 347-381. Microstructure evolution and growth behavior of rod-shaped ZrB2 in situ preparation of ZrB2-SiC composite powders. Ceramics International, 2019, 45, 4016-4021.	4.8	13
	Microstructure evolution and growth behavior of rod-shaped ZrB2 in situ preparation of ZrB2-SiC	4.8	
11	Microstructure evolution and growth behavior of rod-shaped ZrB2 in situ preparation of ZrB2-SiC composite powders. Ceramics International, 2019, 45, 4016-4021.	4.8	13
11 12	Microstructure evolution and growth behavior of rod-shaped ZrB2 in situ preparation of ZrB2-SiC composite powders. Ceramics International, 2019, 45, 4016-4021. Technology Policy and Road Map of Battery., 2019, , 1-59. Nanostructured Materials for Advanced Energy Conversion and Storage Devices: Safety Implications	7.8	0
11 12 13	Microstructure evolution and growth behavior of rod-shaped ZrB2 in situ preparation of ZrB2-SiC composite powders. Ceramics International, 2019, 45, 4016-4021. Technology Policy and Road Map of Battery., 2019, , 1-59. Nanostructured Materials for Advanced Energy Conversion and Storage Devices: Safety Implications at End-of-Life Disposal., 2018, , 517-542. Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor. Journal of Power Sources, 2018, 404,		13 0 13
11 12 13	Microstructure evolution and growth behavior of rod-shaped ZrB2 in situ preparation of ZrB2-SiC composite powders. Ceramics International, 2019, 45, 4016-4021. Technology Policy and Road Map of Battery., 2019, , 1-59. Nanostructured Materials for Advanced Energy Conversion and Storage Devices: Safety Implications at End-of-Life Disposal., 2018, , 517-542. Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor. Journal of Power Sources, 2018, 404, 47-55. Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities.	7.8	13 0 13 42
11 12 13 14	Microstructure evolution and growth behavior of rod-shaped ZrB2 in situ preparation of ZrB2-SiC composite powders. Ceramics International, 2019, 45, 4016-4021. Technology Policy and Road Map of Battery., 2019, , 1-59. Nanostructured Materials for Advanced Energy Conversion and Storage Devices: Safety Implications at End-of-Life Disposal., 2018, , 517-542. Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor. Journal of Power Sources, 2018, 404, 47-55. Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities. European Journal of Mass Spectrometry, 2017, 23, 287-299. Effect of Structured Surfaces on MALDI Analyte Peak Intensities. Australian Journal of Chemistry,	7.8	13 0 13 42 2

#	Article	IF	CITATIONS
19	Carbon Capture and Storageâ^—. , 2015, , 329-366.		5
20	Nanomaterials and Their Application. , 2015, , 1-50.		12
21	Overviews of Synthesis of Nanomaterials. , 2015, , 51-115.		7
22	Nanocharacterization., 2015,, 117-180.		4
23	Sustainable Energy Application. , 2015, , 181-231.		1
24	Sustainable Energy Application. , 2015, , 233-296.		6
25	Nanosafety. , 2015, , 367-421.		0
26	Conclusions/Postlog. , 2015, , 423-424.		0
27	Band gap evaluations of metal-inserted titania nanomaterials. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	6
28	A progressive approach on inactivation of bacteria using silver–titania nanoparticles. Biomaterials Science, 2013, 1, 194-201.	5.4	30
29	Use of Natural Products as Green Reducing Agents To Fabricate Highly Effective Nanodisinfectants. Journal of Agricultural and Food Chemistry, 2013, 61, 2019-2027.	5.2	7
30	Effective bactericidal performance of silver-decorated titania nano-composites. Dalton Transactions, 2013, 42, 2158-2166.	3.3	14
31	Functionalization of Aligned Carbon Nanotubes to Enhance the Performance of Fuel Cell. Energies, 2013, 6, 6476-6486.	3.1	17
32	Three Waves of Disinfectants to Inactivate Bacteria. Materials Research Society Symposia Proceedings, 2013, 1498, 91-96.	0.1	5
33	Highly Potent Bactericidal Activity of Porous Metalâ€Organic Frameworks. Advanced Healthcare Materials, 2012, 1, 225-238.	7.6	136
34	Facile design and nanostructural evaluation of silver-modified titania used as disinfectant. Dalton Transactions, 2011, 40, 1047-1054.	3.3	21
35	The use of a silica-based heat sink to "uncouple―the matrix-assisted laser desorption/ionization (MALDI) mechanism. Canadian Journal of Chemistry, 2011, 89, 446-460.	1.1	2
36	Colloidal Synthesis and Nanocharacterization of Engineered Noble Metal Nanoparticles. International Journal of Green Nanotechnology, 2011, 3, 140-151.	0.3	10

#	Article	IF	CITATIONS
37	Mechanism of Silver Nanoparticles as a Disinfectant. International Journal of Green Nanotechnology, 2011, 3, 118-133.	0.3	9
38	Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids and Surfaces B: Biointerfaces, 2011, 84, 88-96.	5.0	169
39	Comparative assessment of drug interactions in pediatrics at private and public sector hospitals of Sargodha and Faisalabad. African Journal of Pharmacy and Pharmacology, 2011, 5, .	0.3	1
40	Nanostructure characterization and performance evaluation of perovskite sensor composed of multi-elements. Talanta, 2010, 81, 1513-1521.	5.5	2
41	Green Synthesis of Platinum-encapsulated Nickel Nanocatalyst and Its Microstructure Evaluation. Materials Research Society Symposia Proceedings, 2009, 1213, 101201.	0.1	2
42	Construction and characterization of phenol-based sensor derived from colloidal chemistry. Sensors and Actuators B: Chemical, 2009, 139, 584-591.	7.8	6
43	Colombistatin: a disintegrin isolated from the venom of the South American snake (Bothrops) Tj ETQq1 1 0.78431 Toxicology, 2009, 83, 271-279.	14 rgBT /C 4.2	verlock 10 56
44	Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2009, 73, 185-191.	5.0	142
45	Inhibition of lung tumor colonization and cell migration with the disintegrin crotatroxin 2 isolated from the venom of Crotalus atrox. Toxicon, 2008, 51, 1186-1196.	1.6	40
46	Monitoring Conformational Changes in Protein Complexes Using Chemical Cross-Linking and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: The Effect of Calcium Binding on the Calmodulin—Melittin Complex. European Journal of Mass Spectrometry, 2007, 13, 281-290.	1.0	10
47	Theoretical Investigation of the Proton Affinity and Gas-Phase Basicity of Neutral x,y-Dihydroxybenzoic Acid and its Derivatives. European Journal of Mass Spectrometry, 2006, 12, 385-396. Selection on Glycine β-1,3-Endoglucanase Genes Differentially Inhibited by a Phytophthora Glucanase	1.0	7
48	Inhibitor ProteinSequence data from this article have been deposited with EMBL/GenBank Data Libraries under accession nos. AY461847, AY466133, AY466134, AY466135, AY466136, AY466137, AY466138, AY466139, AY466140, AY466141, AY466142, AY466143, AY466144, AY466145, AY466146, AY466147, AY4661 AY466149, AY466150, AY466151, AY466152, AY466153, AY466154, AY466155, AY466156, AY468381, AY4683	.48, 882.	66
49	AY468383, AY468384, Genetics, 2005, 169, 1009-1019. Characterization and identification of disintegrins in Crotalus horridus venom by liquid chromatography and tandem matrix-assisted laser desorption ionization - quadrupole ion trap time-of-flight (MALDI-QIT-TOF) mass spectrometry. Canadian Journal of Chemistry, 2005, 83, 1124-1131.	1.1	10
50	Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant Journal, 2004, 39, 715-733.	5.7	301
51	Parameterising matrix-assisted laser desorption/ionisation (MALDI): strategy for matrix—analyte selection and effect of radical co-additives on analyte peak intensities. Analytica Chimica Acta, 2004, 519, 181-187.	5.4	2
52	Matrix-assisted laser desorption/ionization mass spectrometry with re-engineered 2,5-dihydroxybenzoic acid derivativeElectronic supplementary information (ESI) available: Synthesis of M class matrices. See http://www.rsc.org/suppdata/an/b3/b309386g/. Analyst, The, 2003, 128, 1452.	3.5	9
53	Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Dextran and Dextrin Derivatives. European Journal of Mass Spectrometry, 2003, 9, 61-70.	1.0	21
54	Discrimination Effects in MALDI-MS of Mixtures of Peptides—Analysis of the Proteome. Australian Journal of Chemistry, 2003, 56, 369.	0.9	29

#	Article	IF	CITATION
55	lodine-assisted matrix-assisted laser desorption/ionisation. International Journal of Mass Spectrometry, 2002, 219, 697-701.	1.5	8
56	Title is missing!. Cellulose, 2001, 8, 81-89.	4.9	4
57	Gas-phase basicities of the isomeric dihydroxybenzoic acids and gas-phase acidities of their radical cations. Journal of the American Society for Mass Spectrometry, 2000, 11, 544-552.	2.8	57
58	Sublimation properties of x,y-dihydroxybenzoic acid isomers as model matrix assisted laser desorption ionisation (MALDI) matrices. Thermochimica Acta, 1999, 327, 167-171.	2.7	47
59	Comment: Reproducibility of spectra and threshold fluence in matrix-assisted laser desorption/ionisation (MALDI) of polymers. European Journal of Mass Spectrometry, 1998, 4, 127.	0.7	7
60	Quantification of Biomolecules by External Electrospray Ionization Fourier Transform Mass Spectrometry. Analytical Chemistry, 1997, 69, 2914-2918.	6.5	28
61	Plant Proteomics., 0, , .		0