Tara L Haas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1705726/publications.pdf Version: 2024-02-01

TADAL HAAS

#	Article	IF	CITATIONS
1	Three-dimensional Type I Collagen Lattices Induce Coordinate Expression of Matrix Metalloproteinases MT1-MMP and MMP-2 in Microvascular Endothelial Cells. Journal of Biological Chemistry, 1998, 273, 3604-3610.	3.4	313
2	Dye Tracers Define Differential Endothelial and Smooth Muscle Coupling Patterns Within the Arteriolar Wall. Circulation Research, 1995, 76, 498-504.	4.5	226
3	Egr-1 Mediates Extracellular Matrix-driven Transcription of Membrane Type 1 Matrix Metalloproteinase in Endothelium. Journal of Biological Chemistry, 1999, 274, 22679-22685.	3.4	168
4	Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1540-H1547.	3.2	163
5	Morphology Favors an Endothelial Cell Pathway for Longitudinal Conduction within Arterioles. Microvascular Research, 1997, 53, 113-120.	2.5	159
6	Extracellular Matrix-Driven Matrix Metalloproteinase Production in Endothelial Cells Implications for Angiogenesis. Trends in Cardiovascular Medicine, 1999, 9, 70-77.	4.9	152
7	Differential involvement of MMP-2 and VEGF during muscle stretch- versus shear stress-induced angiogenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1430-H1438.	3.2	151
8	Regulators of angiogenesis and strategies for their therapeutic manipulation. International Journal of Biochemistry and Cell Biology, 2006, 38, 333-357.	2.8	135
9	Exercise Training and Peripheral Arterial Disease. , 2012, 2, 2933-3017.		109
10	Endurance exercise activates matrix metalloproteinases in human skeletal muscle. Journal of Applied Physiology, 2009, 106, 804-812.	2.5	97
11	The roles of adhesion molecules and proteinases in lymphocyte transendothelial migration. Biochemistry and Cell Biology, 1996, 74, 749-757.	2.0	82
12	HIFâ€1α and HIFâ€2α play a central role in stretchâ€induced but not shearâ€stressâ€induced angiogenesis in ra skeletal muscle. Journal of Physiology, 2007, 583, 753-766.	t _{2.9}	81
13	JNK and PI3K differentially regulate MMP-2 and MT1-MMP mRNA and protein in response to actin cytoskeleton reorganization in endothelial cells. American Journal of Physiology - Cell Physiology, 2006, 291, C579-C588.	4.6	77
14	Endothelial cell regulation of matrix metalloproteinases. Canadian Journal of Physiology and Pharmacology, 2005, 83, 1-7.	1.4	70
15	p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stressâ€induced angiogenesis. Journal of Cellular Physiology, 2010, 222, 120-126.	4.1	70
16	MAPK signaling regulates endothelial cell assembly into networks and expression of MT1-MMP and MMP-2. American Journal of Physiology - Cell Physiology, 2005, 288, C659-C668.	4.6	55
17	Effect of mechanical stretch on HIF-1α and MMP-2 expression in capillaries isolated from overloaded skeletal muscles: laser capture microdissection study. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1315-H1320.	3.2	54
18	Identification of a Mechanism Underlying Regulation of the Anti-Angiogenic Forkhead Transcription Factor FoxO1 in Cultured Endothelial Cells and Ischemic Muscle. American Journal of Pathology, 2011, 178, 935-944.	3.8	52

TARA L HAAS

#	Article	IF	CITATIONS
19	Transcriptional Up-regulation of Endothelial Cell Matrix Metalloproteinase-2 in Response to Extracellular Cues Involves GATA-2. Journal of Biological Chemistry, 2003, 278, 47785-47791.	3.4	50
20	JNK as a positive regulator of angiogenic potential in endothelial cells. Cell Biology International, 2008, 32, 769-776.	3.0	48
21	Nitric oxide and p38 MAP kinase mediate shear stressâ€dependent inhibition of MMPâ€⊋ production in microvascular endothelial cells. Journal of Cellular Physiology, 2006, 208, 229-237.	4.1	45
22	Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation. American Journal of Physiology - Cell Physiology, 2008, 295, C600-C610.	4.6	45
23	Endothelial FoxO1 is an intrinsic regulator of thrombospondin 1 expression that restrains angiogenesis in ischemic muscle. Angiogenesis, 2013, 16, 759-772.	7.2	44
24	Static strain stimulates expression of matrix metalloproteinase-2 and VEGF in microvascular endothelium via JNK- and ERK-dependent pathways. Journal of Cellular Biochemistry, 2007, 100, 750-761.	2.6	43
25	Leptin is a physiological regulator of skeletal muscle angiogenesis and is locally produced by PDGFRα and PDGFRβ expressing perivascular cells. Angiogenesis, 2019, 22, 103-115.	7.2	41
26	Inhibition of Proliferation, Migration and Proteolysis Contribute to Corticosterone-Mediated Inhibition of Angiogenesis. PLoS ONE, 2012, 7, e46625.	2.5	41
27	Involvement of MMPs in the outward remodeling of collateral mesenteric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2429-H2437.	3.2	39
28	Endothelial-specific FoxO1 depletion prevents obesity-related disorders by increasing vascular metabolism and growth. ELife, 2018, 7, .	6.0	39
29	Female Mice Have Higher Angiogenesis in Perigonadal Adipose Tissue Than Males in Response to High-Fat Diet. Frontiers in Physiology, 2018, 9, 1452.	2.8	39
30	Differential role of β atenin in VEGF and histamineâ€induced MMPâ€2 production in microvascular endothelial cells. Journal of Cellular Biochemistry, 2009, 107, 272-283.	2.6	37
31	Regulation of skeletal muscle capillary growth in exercise and disease. Applied Physiology, Nutrition and Metabolism, 2015, 40, 1221-1232.	1.9	33
32	Muscle-derived vascular endothelial growth factor regulates microvascular remodelling in response to increased shear stress in mice. Acta Physiologica, 2015, 214, 349-360.	3.8	32
33	Shear stressâ€induced Etsâ€1 modulates protease inhibitor expression in microvascular endothelial cells. Journal of Cellular Physiology, 2008, 217, 502-510.	4.1	31
34	Forkhead BoxO transcription factors restrain exerciseâ€induced angiogenesis. Journal of Physiology, 2014, 592, 4069-4082.	2.9	31
35	Evolving Strategies in Manipulating VEGF/VEGFR Signaling for the Promotion of Angiogenesis in Ischemic Muscle. Current Pharmaceutical Design, 2009, 15, 411-421.	1.9	28
36	Angiotensin II Evokes Angiogenic Signals within Skeletal Muscle through Co-ordinated Effects on Skeletal Myocytes and Endothelial Cells. PLoS ONE, 2014, 9, e85537.	2.5	28

TARA L HAAS

#	Article	IF	CITATIONS
37	Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Frontiers in Cell and Developmental Biology, 2020, 8, 77.	3.7	28
38	Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a highâ€fat diet. FASEB Journal, 2016, 30, 3039-3052.	0.5	26
39	Molecular Control of Capillary Growth in Skeletal Muscle. Applied Physiology, Nutrition, and Metabolism, 2002, 27, 491-515.	1.7	21
40	The effects of voluntary exercise and prazosin on capillary rarefaction and metabolism in streptozotocin-induced diabetic male rats. Journal of Applied Physiology, 2017, 122, 492-502.	2.5	15
41	Angiogenesis within the duodenum of patients with cirrhosis is modulated by mechanosensitive <scp>K</scp> ruppelâ€like factor 2 and micro <scp>RNA</scp> â€126. Liver International, 2012, 32, 1222-1232.	3.9	14
42	Tissue Inhibitor of Metalloproteinase 1 Influences Vascular Adaptations to Chronic Alterations in Blood Flow. Journal of Cellular Physiology, 2017, 232, 831-841.	4.1	12
43	Voluntary exercise improves metabolic profile in high-fat fed glucocorticoid-treated rats. Journal of Applied Physiology, 2015, 118, 1331-1343.	2.5	11
44	Regulation of matrix metalloproteinase expression. Drug Discovery Today: Disease Models, 2011, 8, 5-11.	1.2	10
45	Endothelial cell TIMP-1 is upregulated by shear stress via Sp-1 and the TGFβ1 signaling pathways. Biochemistry and Cell Biology, 2014, 92, 77-83.	2.0	10
46	Novel perspective: exercise training stimulus triggers the expression of the oncoprotein human double minute-2 in human skeletal muscle. Physiological Reports, 2013, 1, e00028.	1.7	8
47	Prazosin Can Prevent Glucocorticoid Mediated Capillary Rarefaction. PLoS ONE, 2016, 11, e0166899.	2.5	8
48	The superoxide dismutase mimetic tempol does not alleviate glucocorticoid-mediated rarefaction of rat skeletal muscle capillaries. Physiological Reports, 2017, 5, e13243.	1.7	7
49	Highâ€fat diet preâ€conditioning improves microvascular remodelling during regeneration of ischaemic mouse skeletal muscle. Acta Physiologica, 2020, 229, e13449.	3.8	7
50	Shaping and Remodeling of the Fetoplacental Circulation: Aspects of Health and Disease. Microcirculation, 2014, 21, 1-3.	1.8	6
51	Ursodeoxycholic Acid Influences the Expression of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mtext>p</mml:mtext><mml:msup><mml:mrow><mml:mtext>27</mml:mtext></mml:mrow><m Not FoxO1 in Patients with Non-Cirrhotic Primary Biliary Cirrhosis. Journal of Immunology Research,</m </mml:msup></mml:math 	m <mark>2n2</mark> row:	› < هml:mtex
52	2019, 2019, 198. High Glucose Treatment Limits Drosha Protein Expression and Alters AngiomiR Maturation in Microvascular Primary Endothelial Cells via an Mdm2-dependent Mechanism. Cells, 2021, 10, 742.	4.1	5
53	Metabolic effects of prazosin on skeletal muscle insulin resistance in glucocorticoid-treated male rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R62-R73.	1.8	3
54	The angiogenic response to skeletal muscle overload is not dependent on mast cell activation. Microcirculation, 2010, 17, no-no.	1.8	2

TARA L HAAS

#	Article	IF	CITATIONS
55	Cdc42 increases activation of MMPâ $\in 2$ in endothelial cells. FASEB Journal, 2008, 22, 925.9.	0.5	2
56	Exploring risk factors at the molecular level. ELife, 2021, 10, .	6.0	1
57	Emerging Roles of Pericytes in Coordinating Skeletal Muscle Functions: Implications and Therapeutic Potential. Current Tissue Microenvironment Reports, 2021, 2, 29-39.	3.2	1
58	Quantitative Methods to Assess Adipose Vasculature. Methods in Molecular Biology, 2022, 2441, 201-221.	0.9	1
59	Adipose tissue lipolysis controlled by endothelial cells. Nature Reviews Endocrinology, 2022, 18, 397-398.	9.6	1
60	Etsâ€l and the mitogen activated protein kinases are modulated by nitric oxide. FASEB Journal, 2006, 20, A712.	0.5	0
61	câ€Jun regulates MMPâ€2 and MT1â€MMP mRNA expression in endothelium FASEB Journal, 2006, 20, .	0.5	0
62	RhoA inhibition activates MMPâ \in 2 via a PI3K dependent mechanism FASEB Journal, 2007, 21, A193.	0.5	0
63	VEGFR2 regulates p38 but not ERK1/2 in response to shear stress. FASEB Journal, 2007, 21, A138.	0.5	0
64	Critical role of HIF1α and HIF2α in stretchâ€induced angiogenesis. FASEB Journal, 2007, 21, .	0.5	0
65	Erythropoietin and Vascular Endothelial Growth Factor induce activation of Matrix Metalloproteinaseâ $\in 2$ via a common pathway. FASEB Journal, 2008, 22, 925.10.	0.5	0
66	Upregulation of FLTâ€1 mRNA via shear stress. FASEB Journal, 2008, 22, 925.11.	0.5	0
67	TIMPâ€1 is increased by shear stress in the skeletal muscle microvasculature. FASEB Journal, 2008, 22, 925.8.	0.5	0
68	Mast cell mediators increase endothelial cell MMPâ€⊋ production in a β ateninâ€dependent manner. FASEB Journal, 2008, 22, 925.12.	0.5	0
69	Mast cells increase in number following muscle overload but their activation is not critical to the angiogenic process. FASEB Journal, 2009, 23, 634.7.	0.5	0
70	Mechanisms underlying corticosterone mediated inhibition of angiogenesis. FASEB Journal, 2009, 23, 634.8.	0.5	0
71	TIMPâ€1 protein but not secretion is increased by shear stress in the skeletal muscle microvasculature. FASEB Journal, 2009, 23, 634.6.	0.5	0
72	A potential role for autocrine VEGF signaling in endothelial cell function. FASEB Journal, 2013, 27, 685.14.	0.5	0

0

#	Article	IF	CITATIONS
73	Regulation of Proteolysis in Vascular Remodeling. , 2014, , 295-319.		0

74 Capillary diversity. , 2022, , 99-110.