
Krishna Prasadan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1705369/publications.pdf Version: 2024-02-01

Κριςμηλ Ορλεληλη

#	Article	IF	CITATIONS
1	M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1211-20.	3.3	267
2	Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell, 2018, 22, 78-90.e4.	5.2	138
3	Duct Cells Contribute to Regeneration of Endocrine and Acinar Cells Following Pancreatic Damage in Adult Mice. Gastroenterology, 2011, 141, 1451-1462.e6.	0.6	124
4	TGFβ Receptor Signaling Is Essential for Inflammation-Induced but Not β-Cell Workload–Induced β-Cell Proliferation. Diabetes, 2013, 62, 1217-1226.	0.3	97
5	Hypoglycemia Reduces Vascular Endothelial Growth Factor A Production by Pancreatic Beta Cells as a Regulator of Beta Cell Mass. Journal of Biological Chemistry, 2013, 288, 8636-8646.	1.6	85
6	A Smad Signaling Network Regulates Islet Cell Proliferation. Diabetes, 2014, 63, 224-236.	0.3	64
7	Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes. Nature Protocols, 2014, 9, 2719-2724.	5.5	64
8	Autophagy protects pancreatic beta cell mass and function in the setting of a high-fat and high-glucose diet. Scientific Reports, 2017, 7, 16348.	1.6	57
9	TGF-Î ² isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas. Developmental Biology, 2007, 305, 508-521.	0.9	53
10	Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells. Endocrinology, 2016, 157, 166-175.	1.4	42
11	Neurogenin3 Activation Is Not Sufficient to Direct Duct-to-Beta Cell Transdifferentiation in the Adult Pancreas. Journal of Biological Chemistry, 2013, 288, 25297-25308.	1.6	38
12	Smad signaling pathways regulate pancreatic endocrine development. Developmental Biology, 2013, 378, 83-93.	0.9	32
13	α-Cells are dispensable in postnatal morphogenesis and maturation of mouse pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1030-E1040.	1.8	32
14	SMAD3/Stat3 Signaling Mediates β-Cell Epithelial-Mesenchymal Transition in Chronic Pancreatitis–Related Diabetes. Diabetes, 2017, 66, 2646-2658.	0.3	31
15	Epidermal Growth Factor Receptor Signaling Regulates β Cell Proliferation in Adult Mice. Journal of Biological Chemistry, 2016, 291, 22630-22637.	1.6	30
16	Transient Suppression of TGFÎ ² Receptor Signaling Facilitates Human Islet Transplantation. Endocrinology, 2016, 157, 1348-1356.	1.4	29
17	Gcg CreERT2 knockin mice as a tool for genetic manipulation in pancreatic alpha cells. Diabetologia, 2017, 60, 2399-2408.	2.9	27
18	Targeted Inhibition of Pancreatic Acinar Cell Calcineurin Is a Novel Strategy to Prevent Post-ERCP Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 119-128.	2.3	25

Krishna Prasadan

#	Article	IF	CITATIONS
19	Wholeâ€Mount Imaging Demonstrates Hypervascularity of the Pancreatic Ducts and Other Pancreatic Structures. Anatomical Record, 2012, 295, 465-473.	0.8	16
20	Biliary-Atresia-Associated Mannosidase-1-Alpha-2 Gene Regulates Biliary and Ciliary Morphogenesis and Laterality. Frontiers in Physiology, 2020, 11, 538701.	1.3	13
21	Placental growth factor in beta cells plays an essential role in gestational beta-cell growth. BMJ Open Diabetes Research and Care, 2020, 8, e000921.	1.2	12
22	SMAD7 enhances adult β-cell proliferation without significantly affecting β-cell function in mice. Journal of Biological Chemistry, 2020, 295, 4858-4869.	1.6	12
23	Evidence of a developmental origin of beta-cell heterogeneity using a dual lineage tracing technology. Development (Cambridge), 2019, 146, .	1.2	11
24	A synopsis of factors regulating beta cell development and beta cell mass. Cellular and Molecular Life Sciences, 2016, 73, 3623-3637.	2.4	9
25	PNA lectin for purifying mouse acinar cells from the inflamed pancreas. Scientific Reports, 2016, 6, 21127.	1.6	8
26	Alpha-to-beta cell trans-differentiation for treatment of diabetes. Biochemical Society Transactions, 2021, 49, 2539-2548.	1.6	8
27	Chemical pancreatectomy treats chronic pancreatitis while preserving endocrine function in preclinical models. Journal of Clinical Investigation, 2021, 131, .	3.9	6
28	Conversion of α-Cells to β-Cells in the Postpartum Mouse Pancreas Involves Lgr5 Progeny. Diabetes, 2021, 70, 1508-1518.	0.3	5
29	β-cell Smad2 null mice have improved β-cell function and are protected from diet-induced hyperglycemia. Journal of Biological Chemistry, 2021, 297, 101235.	1.6	5
30	Polarized macrophages promote gestational beta cell growth through extracellular signalâ€regulated kinase 5 signalling. Diabetes, Obesity and Metabolism, 2022, 24, 1721-1733.	2.2	3
31	Insulin-positive ductal cells do not migrate into preexisting islets during pregnancy. Experimental and Molecular Medicine, 2021, 53, 605-614.	3.2	2
32	Mechanisms of Impaired Lung Development and Ciliation in Mannosidase-1-Alpha-2 (Man1a2) Mutants. Frontiers in Physiology, 2021, 12, 658518.	1.3	2
33	Pancreatic Duct Infusion: An Effective and Selective Method of Drug and Viral Delivery. Journal of Visualized Experiments, 2021, , .	0.2	0