Christian Klinke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1705131/publications.pdf

Version: 2024-02-01

101496 79644 5,642 115 36 citations h-index papers

g-index 116 116 116 7988 docs citations times ranked citing authors all docs

73

#	Article	lF	Citations
1	Metal nanoclusterâ€based devices: Challenges and opportunities. Aggregate, 2022, 3, e132.	5.2	11
2	Structural Reconstruction in Lead-Free Two-Dimensional Tin Iodide Perovskites Leading to High Quantum Yield Emission. ACS Energy Letters, 2022, 7, 975-983.	8.8	19
3	Role of Magnetic Coupling in Photoluminescence Kinetics of Mn ²⁺ -Doped ZnS Nanoplatelets. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18806-18815.	4.0	8
4	Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. Nanoscale, 2021, 13, 12394-12422.	2.8	38
5	Mechanistic insights and selected synthetic routes of atomically precise metal nanoclusters. Nano Select, 2021, 2, 831-846.	1.9	5
6	Surface Defines the Properties: Colloidal Bi2Se3 Nanosheets with High Electrical Conductivity. Journal of Physical Chemistry C, 2021, 125, 6442-6448.	1.5	5
7	In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication. Journal of the American Chemical Society, 2021, 143, 4234-4243.	6.6	23
8	Colloidal Manganese-Doped ZnS Nanoplatelets and Their Optical Properties. Chemistry of Materials, 2021, 33, 275-284.	3.2	36
9	Colloidal Two-Dimensional Metal Chalcogenides: Realization and Application of the Structural Anisotropy. Accounts of Chemical Research, 2021, 54, 3792-3803.	7.6	15
10	Postdeposition Ligand Exchange Allows Tuning the Transport Properties of Largeâ€Scale CuInSe 2 Quantum Dot Solids. Advanced Optical Materials, 2020, 8, 1901058.	3.6	14
11	Function Follows Form: From Semiconducting to Metallic toward Superconducting PbS Nanowires by Faceting the Crystal. Advanced Functional Materials, 2020, 30, 1910503.	7.8	5
12	Anisotropic circular photogalvanic effect in colloidal tin sulfide nanosheets. Nanoscale, 2020, 12, 6256-6262.	2.8	22
13	Singleâ€Crystalline Colloidal Quasiâ€2D Tin Telluride. Advanced Materials Interfaces, 2020, 7, 2000410.	1.9	5
14	Synthesis of Single-Crystalline Lead Sulfide Nanoframes and Nanorings. Chemistry of Materials, 2019, 31, 5646-5654.	3.2	6
15	Preparation of high-yield and ultra-pure Au ₂₅ nanoclusters: towards their implementation in real-world applications. Nanoscale, 2019, 11, 1988-1994.	2.8	14
16	From Wurtzite Nanoplatelets to Zinc Blende Nanorods: Simultaneous Control of Shape and Phase in Ultrathin ZnS Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 3828-3835.	2.1	21
17	Micron-Size Two-Dimensional Methylammonium Lead Halide Perovskites. ACS Nano, 2019, 13, 6955-6962.	7.3	14
18	Field Effect and Photoconduction in Au ₂₅ Nanoclusters Films. Advanced Materials, 2019, 31, e1900684.	11.1	42

#	Article	lF	CITATIONS
19	In-Plane Anisotropic Faceting of Ultralarge and Thin Single-Crystalline Colloidal SnS Nanosheets. Journal of Physical Chemistry Letters, 2019, 10, 993-999.	2.1	20
20	Photoexcitation of PbS nanosheets leads to highly mobile charge carriers and stable excitons. Nanoscale, 2019, 11, 21569-21576.	2.8	19
21	A New Synthesis Approach for Carbon Nitrides: Poly(triazine imide) and Its Photocatalytic Properties. ACS Omega, 2018, 3, 3892-3900.	1.6	37
22	Highâ€Performance n―and pâ€Type Fieldâ€Effect Transistors Based on Hybridly Surfaceâ€Passivated Colloidal PbS Nanosheets. Advanced Functional Materials, 2018, 28, 1706815.	7.8	15
23	Insights into the formation mechanism of two-dimensional lead halide nanostructures. Nanoscale, 2018, 10, 4442-4451.	2.8	15
24	Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1267-1280.	1.4	5
25	Colloidal lead iodide nanorings. Nanoscale, 2018, 10, 21197-21208.	2.8	4
26	Copper sulfide nanosheets with shape-tunable plasmonic properties in the NIR region. Nanoscale, 2018, 10, 20640-20651.	2.8	74
27	Molecular Doping of Electrochemically Prepared Triazine-Based Carbon Nitride by 2,4,6-Triaminopyrimidine for Improved Photocatalytic Properties. ACS Omega, 2018, 3, 17042-17048.	1.6	20
28	Colloidal tin sulfide nanosheets: formation mechanism, ligand-mediated shape tuning and photo-detection. Journal of Materials Chemistry C, 2018, 6, 9410-9419.	2.7	17
29	Modeling adsorbateâ€induced property changes of carbon nanotubes. Journal of Computational Chemistry, 2017, 38, 861-868.	1.5	3
30	Size, Shape, and Phase Control in Ultrathin CdSe Nanosheets. Nano Letters, 2017, 17, 4165-4171.	4.5	41
31	Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets. Nature Communications, 2017, 8, 15721.	5.8	26
32	Hierarchical Colloidal Nanostructures – from Fundamentals to Applications. Zeitschrift Fur Physikalische Chemie, 2017, 231, 1-5.	1.4	0
33	Attachment of Colloidal Nanoparticles to Boron Nitride Nanotubes. Chemistry of Materials, 2017, 29, 726-734.	3.2	12
34	Simulation study of environmentally friendly quantum-dot-based photovoltaic windows. Journal of Materials Chemistry C, 2017, 5, 11790-11797.	2.7	8
35	Electrical transport through self-assembled colloidal nanomaterials and their perspectives. Europhysics Letters, 2017, 119, 36002.	0.7	5
36	Metal nanoparticle film–based room temperature Coulomb transistor. Science Advances, 2017, 3, e1603191.	4.7	28

3

#	Article	IF	CITATIONS
37	Rashba Spin-Orbit Coupling in Colloidal Lead Sulfide Nanosheets. , 2017, , .		1
38	Shell or Dots â^' Precursor Controlled Morphology of Auâ€"Se Deposits on CdSe Nanoparticles. Chemistry of Materials, 2016, 28, 2704-2714.	3.2	8
39	Coulomb blockade based field-effect transistors exploiting stripe-shaped channel geometries of self-assembled metal nanoparticles. Nanoscale, 2016, 8, 14384-14392.	2.8	16
40	New ways to synthesize lead sulfide nanosheetsâ€"substituted alkanes direct the growth of 2D nanostructures. Nanotechnology, 2016, 27, 355602.	1.3	9
41	Competing Interactions between Various Entropic Forces toward Assembly of Pt ₃ Ni Octahedra into a Body-Centered Cubic Superlattice. Nano Letters, 2016, 16, 2792-2799.	4.5	48
42	Solution-Processed Two-Dimensional Ultrathin InSe Nanosheets. Chemistry of Materials, 2016, 28, 1728-1736.	3. 2	113
43	Synthesis and Characterization of Monodisperse Metallodielectric SiO ₂ @Pt@SiO ₂ Core–Shell–Shell Particles. Langmuir, 2016, 32, 848-857.	1.6	15
44	Lead Sulfide: Tailoring the Height of Ultrathin PbS Nanosheets and Their Application as Field-Effect Transistors (Small 7/2015). Small, 2015, 11, 888-888.	5 . 2	0
45	Sculpting of Lead Sulfide Nanoparticles by Means of Acetic Acid and Dichloroethane. Zeitschrift Fur Physikalische Chemie, 2015, 229, 139-151.	1.4	12
46	Metal Domain Size Dependent Electrical Transport in Pt-CdSe Hybrid Nanoparticle Monolayers. ACS Nano, 2015, 9, 6077-6087.	7.3	16
47	Solution-Grown Nanowire Devices for Sensitive and Fast Photodetection. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12184-12192.	4.0	9
48	From Dots to Stripes to Sheets: Shape Control of Lead Sulfide Nanostructures. Chemistry of Materials, 2015, 27, 8248-8254.	3. 2	32
49	Photovoltaic effect in individual asymmetrically contacted lead sulfide nanosheets. Nanoscale, 2015, 7, 4875-4883.	2.8	37
50	Charge Redistribution and Extraction in Photocatalytically Synthesized Au–ZnO Nanohybrids. Journal of Physical Chemistry C, 2015, 119, 21704-21710.	1.5	19
51	Tailoring the Height of Ultrathin PbS Nanosheets and Their Application as Field-Effect Transistors. Small, 2015, 11, 826-833.	5.2	48
52	Virtually Bare Nanocrystal Surfaces: Significantly Enhanced Electrical Transport in CulnSe ₂ and Culn _{1â°'<i>x</i>} Ga _{<i>x</i>} Se ₂ Thin Films upon Ligand Exchange with Thermally Degradable 1â€Ethylâ€5â€Thiotetrazole. Advanced Functional Materials, 2014, 24, 1081-1088.	7.8	26
53	Cl-capped CdSe nanocrystals via in situ generation of chloride anions. Nanoscale, 2014, 6, 6812-6818.	2.8	13
54	Highly efficient carrier multiplication in PbS nanosheets. Nature Communications, 2014, 5, 3789.	5.8	109

#	Article	IF	Citations
55	Shape Evolution of CdSe Nanoparticles Controlled by Halogen Compounds. Chemistry of Materials, 2014, 26, 1813-1821.	3.2	65
56	Metal nanoparticle field-effect transistor. Journal of Applied Physics, 2013, 114, .	1.1	7
57	Correlating Superlattice Polymorphs to Internanoparticle Distance, Packing Density, and Surface Lattice in Assemblies of PbS Nanoparticles. Nano Letters, 2013, 13, 1303-1311.	4.5	107
58	Interfacing Quantum Dots and Graphitic Surfaces with Chlorine Atomic Ligands. ACS Nano, 2013, 7, 2559-2565.	7.3	22
59	Morphology dependence of radial elasticity in multiwalled boron nitride nanotubes. Applied Physics Letters, 2012, 101, 103109.	1.5	11
60	Adhesion and size dependent friction anisotropy in boron nitride nanotubes. Nanotechnology, 2012, 23, 455706.	1.3	9
61	Oxygen and light sensitive field-effect transistors based on ZnO nanoparticles attached to individual double-walled carbon nanotubes. Nanoscale, 2012, 4, 251-256.	2.8	15
62	Vertically Oriented Carbon Nanostructures and Their Application Potential for Polymer-Based Solar Cells. Journal of Physical Chemistry C, 2012, 116, 412-419.	1.5	13
63	Supramolecular Interaction of Single-Walled Carbon Nanotubes with a Functional TTF-Based Mediator Probed by Field-Effect Transistor Devices. Journal of Physical Chemistry C, 2012, 116, 20062-20066.	1.5	16
64	Field–effect transistors made of individual colloidal PbS nanosheets. Applied Physics Letters, 2012, 101, 073102.	1.5	60
65	Sliding on a Nanotube: Interplay of Friction, Deformations and Structure. Advanced Materials, 2012, 24, 2879-2884.	11.1	7
66	Tunable Electrical Transport through Annealed Monolayers of Monodisperse Cobaltâ^'Platinum Nanoparticles. ACS Nano, 2011, 5, 67-72.	7.3	20
67	Thermoelectric Properties of Lead Chalcogenide Core–Shell Nanostructures. ACS Nano, 2011, 5, 8541-8551.	7.3	108
68	Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment. Science, 2010, 329, 550-553.	6.0	756
69	Colloidal nanostructures as building blocks for macroscopic thermoelectric materials with electron-crystal phonon-glass properties. Materials Research Society Symposia Proceedings, 2010, 1267, 1.	0.1	O
70	Reversible Attachment of Platinum Alloy Nanoparticles to Nonfunctionalized Carbon Nanotubes. ACS Nano, 2010, 4, 2438-2444.	7.3	31
71	ZT Enhancement in Solution-Grown Sb _(2â^'<i>x</i>) Bi _{<i>x</i>} Te ₃ Nanoplatelets. ACS Nano, 2010, 4, 4283-4291.	7.3	122
72	Growth and reductive transformation of a gold shell around pyramidal cadmium selenide nanocrystals. Journal of Materials Chemistry, 2010, 20, 10602.	6.7	22

#	Article	IF	Citations
73	Synthesis and Thermoelectric Characterization of Bi ₂ Te ₃ Nanoparticles. Advanced Functional Materials, 2009, 19, 3476-3483.	7.8	308
74	Hindered rolling and friction anisotropy in supported carbon nanotubes. Nature Materials, 2009, 8, 876-881.	13.3	70
75	Synthesis of InP Nanoneedles and Their Use as Schottky Devices. ACS Nano, 2009, 3, 668-672.	7.3	33
76	On the Electric Conductivity of Highly Ordered Monolayers of Monodisperse Metal Nanoparticles. Nano Letters, 2009, 9, 473-478.	4.5	40
77	In-situ Polymerization of Olefins on Nanoparticles or Fibers by Metallocene Catalysts. Topics in Catalysis, 2008, 48, 84-90.	1.3	45
78	3-D characterization of CdSe nanoparticles attached to carbon nanotubes. Nano Research, 2008, 1, 89-97.	5.8	37
79	Carbon Supported CdSe Nanocrystals. Journal of the American Chemical Society, 2008, 130, 15282-15284.	6.6	40
80	CdS Nanoparticles Capped with 1-Substituted 5-Thiotetrazoles: Synthesis, Characterization, and Thermolysis of the Surfactant. Chemistry of Materials, 2008, 20, 4545-4547.	3.2	45
81	Preparation and Electrical Properties of Cobaltâ 'Platinum Nanoparticle Monolayers Deposited by the Langmuirâ 'Blodgett Technique. ACS Nano, 2008, 2, 1123-1130.	7.3	130
82	Iron nanoparticle formation in a metal–organic matrix: from ripening to gluttony. Nanotechnology, 2007, 18, 215601.	1.3	14
83	Quantum Dot Attachment and Morphology Control by Carbon Nanotubes. Nano Letters, 2007, 7, 3564-3568.	4.5	101
84	Field-Effect Transistors Assembled from Functionalized Carbon Nanotubes. Nano Letters, 2006, 6, 906-910.	4.5	135
85	Interaction of solid organic acids with carbon nanotube field effect transistors. Chemical Physics Letters, 2006, 430, 75-79.	1.2	22
86	Selective Placement of Carbon Nanotubes on Metal-Oxide Surfaces. Langmuir, 2005, 21, 8569-8571.	1.6	50
87	Self-aligned carbon nanotube transistors with charge transfer doping. Applied Physics Letters, 2005, 86, 123108.	1.5	136
88	Radial Elasticity of Multiwalled Carbon Nanotubes. Physical Review Letters, 2005, 94, 175502.	2.9	212
89	Tungsten Oxide Nanowire Growth by Chemically Induced Strain. Journal of Physical Chemistry B, 2005, 109, 17787-17790.	1.2	76
90	Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Physical Review B, 2005, 71, .	1.1	59

#	Article	IF	CITATIONS
91	Enhanced Field Emission from Multiwall Carbon Nanotube Films by Secondary Growth. Journal of Physical Chemistry B, 2005, 109, 21677-21680.	1.2	33
92	Charge Transfer Induced Polarity Switching in Carbon Nanotube Transistors. Nano Letters, 2005, 5, 555-558.	4.5	169
93	Spin-dependent magnetoresistance in multiwall carbon nanotubes. Europhysics Letters, 2004, 67, 103-109.	0.7	22
94	Formation of Metallic Nanocrystals from Gel-like Precursor Films for CVD Nanotube Growth:  An in Situ TEM Characterization. Journal of Physical Chemistry B, 2004, 108, 11357-11360.	1.2	19
95	Degradation and failure of carbon nanotube field emitters. Physical Review B, 2003, 67, .	1.1	300
96	Growth of carbon nanotubes characterized by field emission measurements during chemical vapor deposition. Physical Review B, 2003, 67, .	1.1	52
97	Thermodynamic calculations on the catalytic growth of carbon nanotubes. AIP Conference Proceedings, 2003, , .	0.3	0
98	Controlled Growth and Applications of Carbon Nanotubes. Chimia, 2002, 56, 547-552.	0.3	3
99	Field Emission of Individual Carbon Nanotubes in the Scanning Electron Microscope. Physical Review Letters, 2002, 89, 197602.	2.9	364
100	Monodisperse Multiwall Carbon Nanotubes Obtained with Ferritin as Catalyst. Nano Letters, 2002, 2, 665-667.	4.5	74
101	Raman Spectroscopy and Field Emission Measurements on Catalytically Grown Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 11191-11195.	1.2	62
102	Carbon nanotube films as electron field emitters. Carbon, 2002, 40, 1715-1728.	5.4	294
103	Comparative study of the catalytic growth of patterned carbon nanotube films. Surface Science, 2001, 492, 195-201.	0.8	53
104	Patterned growth of carbon nanotubes on borosilicate glass. AIP Conference Proceedings, 2001, , .	0.3	1
105	Tailoring the diameter of decorated C–N nanotubes by temperature variations using HF-CVD. Carbon, 2001, 39, 2163-2172.	5.4	30
106	Influence of the deposition conditions on the field emission properties of patterned nitrogenated carbon nanotube films. Chemical Physics Letters, 2001, 343, 21-27.	1.2	18
107	Robust controller design for multivariable nonlinear systems via multi-model H2/Hâ^ž synthesis. Chemical Engineering Science, 2001, 56, 4339-4349.	1.9	11
108	Air-stable chemical doping of carbon nanotube transistors. , 0, , .		7

#	Article	IF	CITATIONS
109	Charge transferred doping and electroluminescence in carbon nanotube transistors. , 0, , .		1
110	Two-Dimensional Nanostructures: Synthesis and Optoelectronic Transport. , 0, , .		0
111	Thermoelectric Properties of Aerogels of PbS Nanoplatelets. , 0, , .		0
112	Colloidal Two-Dimensional PbS Nanosheets and Ultrathin PbS Nanoplatelets – High Mobility vs. Photoluminescence Properties. , 0, , .		0
113	Shape and Size Control of the Synthesis of 2D Tin Sulfide (SnS) Nanosheets and Electronic Application. , 0, , .		0
114	Thermoelectric Properties of Aerogels of PbS Nanoplatelets. , 0, , .		0
115	Two-Dimensional Nanostructures: Synthesis and Optoelectronic Transport. , 0, , .		0