
Kishore Natte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1704420/publications.pdf Version: 2024-02-01

KISHODE NATTE

#	Article	IF	CITATIONS
1	Reductive Amination, Hydrogenation and Hydrodeoxygenation of 5â€Hydroxymethylfurfural using Silicaâ€supported Cobalt―Nanoparticles. ChemCatChem, 2022, 14, .	3.7	19
2	Value addition of lignin to zingerone using recyclable AlPO4 and Ni/LRC catalysts. Chemical Engineering Journal, 2022, 431, 134130.	12.7	10
3	Thermochemical methods for upgrading of lignin to aromatic chemicals. , 2022, , 499-533.		1
4	Synergy between homogeneous and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 6623-6649.	4.1	29
5	Surface-modified nanomaterials for synthesis of pharmaceuticals. , 2022, , 251-266.		0
6	Lignin Residue-Derived Carbon-Supported Nanoscale Iron Catalyst for the Selective Hydrogenation of Nitroarenes and Aromatic Aldehydes. ACS Omega, 2022, 7, 19804-19815.	3.5	11
7	Recent Trends in Upgrading of CO ₂ as a C1 Reactant in <i>Nâ€</i> and <i>Câ€</i> Methylation Reactions. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	7
8	Pd/C-catalyzed transfer hydrogenation of aromatic nitro compounds using methanol as a hydrogen source. Journal of the Indian Chemical Society, 2021, 98, 100014.	2.8	9
9	Simple RuCl ₃ â€catalyzed <i>N</i> â€Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem, 2021, 13, 1722-1729.	3.7	41
10	Base Metal atalyzed Câ€Methylation Reactions Using Methanol. Advanced Synthesis and Catalysis, 2021, 363, 5028-5046.	4.3	30
11	Recent developments in reductive N-methylation with base-metal catalysts. Tetrahedron, 2021, 98, 132414.	1.9	16
12	Biorenewable carbon-supported Ru catalyst for <i>N</i> -alkylation of amines with alcohols and selective hydrogenation of nitroarenes. New Journal of Chemistry, 2021, 45, 14687-14694.	2.8	13
13	Scalable preparation of stable and reusable silica supported palladium nanoparticles as catalysts for N-alkylation of amines with alcohols. Journal of Catalysis, 2020, 382, 141-149.	6.2	30
14	Biocarbon Supported Nanoscale Ruthenium Oxide-Based Catalyst for Clean Hydrogenation of Arenes and Heteroarenes. ACS Sustainable Chemistry and Engineering, 2020, 8, 15740-15754.	6.7	44
15	Pd-Nanoparticles immobilized organo-functionalized SBA-15: An efficient heterogeneous catalyst for selective hydrogenation of C C double bonds of α,β-unsaturated carbonyl compounds. Molecular Catalysis, 2020, 497, 111200.	2.0	6
16	Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chemical Society Reviews, 2020, 49, 6273-6328.	38.1	240
17	Synthesis of Functional Chemicals from Ligninâ€derived Monomers by Selective Organic Transformations. Advanced Synthesis and Catalysis, 2020, 362, 5143-5169.	4.3	42
18	Carbon-Supported Cobalt Nanoparticles as Catalysts for the Selective Hydrogenation of Nitroarenes to Arylamines and Pharmaceuticals. ACS Applied Nano Materials, 2020, 3, 11070-11079.	5.0	38

KISHORE NATTE

#	Article	IF	CITATIONS
19	Molybdenum-catalyzed oxidative depolymerization of alkali lignin: Selective production of Vanillin. Applied Catalysis A: General, 2020, 598, 117567.	4.3	43
20	Commercial Pd/C-Catalyzed <i>N</i> -Methylation of Nitroarenes and Amines Using Methanol as Both C1 and H ₂ Source. Journal of Organic Chemistry, 2019, 84, 15389-15398.	3.2	67
21	Expedient Synthesis of N -Methyl- and N -Alkylamines by Reductive Amination using Reusable Cobalt Oxide Nanoparticles. ChemCatChem, 2018, 10, 1205-1205.	3.7	0
22	Expedient Synthesis of <i>N</i> â€Methyl―and <i>N</i> â€Alkylamines by Reductive Amination using Reusable Cobalt Oxide Nanoparticles. ChemCatChem, 2018, 10, 1235-1240.	3.7	29
23	Transitionâ€Metalâ€Catalyzed Utilization of Methanol as a C ₁ â€Source in Organic Synthesis. Angewandte Chemie - International Edition, 2017, 56, 6384-6394.	13.8	227
24	Übergangsmetallkatalysierte Nutzung von Methanol als C ₁ â€Quelle in der organischen Synthese. Angewandte Chemie, 2017, 129, 6482-6492.	2.0	45
25	Convenient iron-catalyzed reductive aminations without hydrogen for selective synthesis of N-methylamines. Nature Communications, 2017, 8, 1344.	12.8	78
26	Palladium atalyzed Trifluoromethylation of (Hetero)Arenes with CF ₃ Br. Angewandte Chemie, 2016, 128, 2832-2836.	2.0	40
27	The Applications of Dimethyl Sulfoxide as Reagent in Organic Synthesis. Advanced Synthesis and Catalysis, 2016, 358, 336-352.	4.3	277
28	Palladium atalyzed Trifluoromethylation of (Hetero)Arenes with CF ₃ Br. Angewandte Chemie - International Edition, 2016, 55, 2782-2786.	13.8	119
29	Synthesis of nitriles from amines using nanoscale Co ₃ O ₄ -based catalysts via sustainable aerobic oxidation. Organic and Biomolecular Chemistry, 2016, 14, 3356-3359.	2.8	27
30	Palladium-catalyzed carbonylative C–H activation of arenes with norbornene as the coupling partner. Journal of Organometallic Chemistry, 2016, 803, 9-12.	1.8	23
31	Palladium atalyzed Carbonylative Cyclization of Arenes by CH Bond Activation with DMF as the Carbonyl Source. Chemistry - A European Journal, 2015, 21, 16370-16373.	3.3	76
32	Heterogeneous Platinumâ€Catalyzed CH Perfluoroalkylation of Arenes and Heteroarenes. Angewandte Chemie - International Edition, 2015, 54, 4320-4324.	13.8	80
33	Iron-catalyzed reduction of aromatic aldehydes with paraformaldehyde and H2O as the hydrogen source. Tetrahedron Letters, 2015, 56, 1118-1121.	1.4	30
34	Nitrogen-Doped Graphene-Activated Iron-Oxide-Based Nanocatalysts for Selective Transfer Hydrogenation of Nitroarenes. ACS Catalysis, 2015, 5, 1526-1529.	11.2	146
35	Convenient copper-mediated Chan–Lam coupling of 2-aminopyridine: facile synthesis of N-arylpyridin-2-amines. Tetrahedron Letters, 2015, 56, 4843-4847.	1.4	21
36	Pd/C as an efficient heterogeneous catalyst for carbonylative four-component synthesis of 4(3H)-quinazolinones. Catalysis Science and Technology, 2015, 5, 4474-4480.	4.1	55

KISHORE NATTE

#	Article	IF	CITATIONS
37	Pd/C-catalyzed carbonylative C–H activation with DMF as the CO source. Tetrahedron Letters, 2015, 56, 6413-6416.	1.4	43
38	Convenient palladium-catalyzed carbonylative synthesis of caprolactam and butyrolactam derived phthalimides and amides by using DBU and DBN as the nitrogen source. Tetrahedron Letters, 2015, 56, 342-345.	1.4	25
39	Palladiumâ€Catalyzed Carbonylative Reactions of 1â€Bromoâ€2â€fluorobenzenes with Various Nucleophiles: Effective Combination of Carbonylation and Nucleophilic Substitution. Chemistry - A European Journal, 2014, 20, 16107-16110.	3.3	29
40	Palladium-catalyzed oxidative carbonylative coupling of arylboronic acids with terminal alkynes to alkynones. Organic and Biomolecular Chemistry, 2014, 12, 5590-5593.	2.8	27
41	Palladiumâ€Catalyzed Carbonylations of Aryl Bromides using Paraformaldehyde: Synthesis of Aldehydes and Esters. Angewandte Chemie, 2014, 126, 10254-10258.	2.0	42
42	Palladiumâ€Catalyzed Carbonylation of 2â€Bromoanilines with 2â€Formylbenzoic Acid and 2â€Halobenzaldehydes: Efficient Synthesis of Functionalized Isoindolinones. Chemistry - A European Journal, 2014, 20, 14184-14188.	3.3	30
43	Palladium@Cerium(IV) Oxide atalyzed Oxidative Synthesis of <i>N</i> â€(2â€Pyridyl)indoles <i>via</i> CH Activation Reaction. Advanced Synthesis and Catalysis, 2014, 356, 2955-2959.	4.3	44
44	High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles. RSC Advances, 2014, 4, 49577-49587.	3.6	74
45	A convenient palladium-catalyzed carbonylative synthesis of quinazolines from 2-aminobenzylamine and aryl bromides. RSC Advances, 2014, 4, 56502-56505.	3.6	25
46	Palladiumâ€Catalyzed Carbonylations of Aryl Bromides using Paraformaldehyde: Synthesis of Aldehydes and Esters. Angewandte Chemie - International Edition, 2014, 53, 10090-10094.	13.8	133
47	Palladiumâ€Catalyzed Carbonylative [3+2+1] Annulation of <i>N</i> â€Arylâ€Pyridineâ€2â€Amines with Internal Alkynes by Cĭ£¿H Activation: Facile Synthesis of 2â€Quinolinones. Chemistry - A European Journal, 2014, 20, 14189-14193.	3.3	64
48	Baseâ€Controlled Selectivity in the Synthesis of Linear and Angular Fused Quinazolinones by a Palladiumâ€Catalyzed Carbonylation/Nucleophilic Aromatic Substitution Sequence. Angewandte Chemie - International Edition, 2014, 53, 7579-7583.	13.8	103
49	Efficient palladium-catalyzed double carbonylation of o-dibromobenzenes: synthesis of thalidomide. Organic and Biomolecular Chemistry, 2014, 12, 5578-5581.	2.8	32
50	Multi-parametric reference nanomaterials for toxicology: state of the art, future challenges and potential candidates. RSC Advances, 2013, 3, 18202.	3.6	32
51	Impact of polymer shell on the formation and time evolution of nanoparticle–protein corona. Colloids and Surfaces B: Biointerfaces, 2013, 104, 213-220.	5.0	48
52	On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system. Colloids and Surfaces B: Biointerfaces, 2013, 108, 110-119.	5.0	40
53	Tuning Interfacial Properties and Colloidal Behavior of Hybrid Nanoparticles by Controlling the Polymer Precursor. Macromolecular Chemistry and Physics, 2012, 213, 2412-2419.	2.2	10
54	Synthesis and characterisation of highly fluorescent core–shell nanoparticles based on Alexa dyes. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	18

#	Article	IF	CITATIONS
55	Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates. Journal of Nanoparticle Research, 2011, 13, 1593-1604.	1.9	81
56	Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Analytical and Bioanalytical Chemistry, 2011, 400, 1367-1373.	3.7	98