List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/170439/publications.pdf Version: 2024-02-01



IAMES P HEATH

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs.<br>Science Immunology, 2023, 8, .                                                                                                       | 5.6  | 35        |
| 2  | Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nature Biotechnology, 2022, 40, 110-120.                                                                                       | 9.4  | 81        |
| 3  | Protein Catalyzed Capture (PCC) Agents for Antigen Targeting. Methods in Molecular Biology, 2022, 2371, 177-191.                                                                                                                              | 0.4  | 0         |
| 4  | Multiple early factors anticipate post-acute COVID-19 sequelae. Cell, 2022, 185, 881-895.e20.                                                                                                                                                 | 13.5 | 605       |
| 5  | KIR <sup>+</sup> CD8 <sup>+</sup> T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science, 2022, 376, eabi9591.                                                                                       | 6.0  | 113       |
| 6  | The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,<br>e2200413119.                                   | 3.3  | 110       |
| 7  | Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .                                                                                                            | 4.2  | 59        |
| 8  | Characteristics and Factors Associated With Coronavirus Disease 2019 Infection, Hospitalization, and Mortality Across Race and Ethnicity. Clinical Infectious Diseases, 2021, 73, 2193-2204.                                                  | 2.9  | 41        |
| 9  | Multi-cohort analysis of host immune response identifies conserved protective and detrimental modules associated with severity across viruses. Immunity, 2021, 54, 753-768.e5.                                                                | 6.6  | 42        |
| 10 | Resolution of tissue signatures of therapy response in patients with recurrent GBM treated with neoadjuvant anti-PD1. Nature Communications, 2021, 12, 4031.                                                                                  | 5.8  | 21        |
| 11 | Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .                                                                | 5.6  | 357       |
| 12 | X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19.<br>Science Immunology, 2021, 6, .                                                                                                         | 5.6  | 267       |
| 13 | Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity, 2021, 54, 2650-2669.e14.                                                                                              | 6.6  | 145       |
| 14 | Microfluidic Single-Cell Proteomics Assay Chip: Lung Cancer Cell Line Case Study. Micromachines, 2021, 12, 1147.                                                                                                                              | 1.4  | 1         |
| 15 | Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and<br>non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO<br>Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375. | 0.6  | 59        |
| 16 | Angiotensin II receptor I auto-antibodies following SARS-CoV-2 infection. PLoS ONE, 2021, 16, e0259902.                                                                                                                                       | 1.1  | 10        |
| 17 | 126. Magnitude and Dynamics of the T-Cell Response to SARS-CoV-2 Infection and Vaccination. Open Forum Infectious Diseases, 2021, 8, S77-S77.                                                                                                 | 0.4  | 0         |
| 18 | HLA-Aâ^—02:01 restricted TÂcell receptors against the highly conserved SARS-CoV-2 polymerase cross-react with human coronaviruses. Cell Reports, 2021, 37, 110167.                                                                            | 2.9  | 18        |

| #  | Article                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Case Study: A Precision Medicine Approach to Multifactorial Dementia and Alzheimer's Disease , 2021, 11, .                                                      |      | 0         |
| 20 | Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve<br>Neoantigen Prediction. Cell, 2020, 183, 818-834.e13.           | 13.5 | 287       |
| 21 | Interdisciplinary Profile: An Established Chemist Journeys into Different Disciplines. IScience, 2020, 23,<br>101088.                                           | 1.9  | 0         |
| 22 | Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell, 2020, 183, 1479-1495.e20.                                            | 13.5 | 449       |
| 23 | Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells. Nature<br>Communications, 2020, 11, 4830.                                         | 5.8  | 88        |
| 24 | Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nature Communications, 2020, 11, 2345.     | 5.8  | 74        |
| 25 | Antibody-recruiting protein-catalyzed capture agents to combat antibiotic-resistant bacteria.<br>Chemical Science, 2020, 11, 3054-3067.                         | 3.7  | 14        |
| 26 | MATE-Seq: microfluidic antigen-TCR engagement sequencing. Lab on A Chip, 2019, 19, 3011-3021.                                                                   | 3.1  | 36        |
| 27 | Inhibition of heme sequestration of histidineâ€rich protein 2 using multiple epitopeâ€ŧargeted peptides.<br>Journal of Peptide Science, 2019, 25, e3203.        | 0.8  | 6         |
| 28 | 4D electron microscopy of T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22014-22019.           | 3.3  | 6         |
| 29 | Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood.<br>Cell Reports, 2019, 28, 2728-2738.e7.                      | 2.9  | 65        |
| 30 | Development of Hematopoietic Stem Cell-Engineered Invariant Natural Killer T Cell Therapy for<br>Cancer. Cell Stem Cell, 2019, 25, 542-557.e9.                  | 5.2  | 48        |
| 31 | T cell antigen discovery via signaling and antigen-presenting bifunctional receptors. Nature Methods, 2019, 16, 191-198.                                        | 9.0  | 103       |
| 32 | T cell antigen discovery via trogocytosis. Nature Methods, 2019, 16, 183-190.                                                                                   | 9.0  | 117       |
| 33 | Phenotypic heterogeneity and evolution of melanoma cells associated with targeted therapy resistance. PLoS Computational Biology, 2019, 15, e1007034.           | 1.5  | 41        |
| 34 | Protein-Catalyzed Capture Agents. Chemical Reviews, 2019, 119, 9950-9970.                                                                                       | 23.0 | 27        |
| 35 | Framing technology challenges associated with improving cancer immunotherapies. Lab on A Chip, 2019, 19, 3366-3367.                                             | 3.1  | 0         |
| 36 | Modulating the Folding Landscape of Superoxide Dismutaseâ€1 with Targeted Molecular Binders.<br>Angewandte Chemie - International Edition, 2018, 57, 6212-6215. | 7.2  | 11        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Epitopeâ€Targeted Macrocyclic Peptide Ligand with Picomolar Cooperative Binding to Interleukinâ€17F.<br>Chemistry - A European Journal, 2018, 24, 3760-3767.                                                                                      | 1.7  | 16        |
| 38 | Modulating the Folding Landscape of Superoxide Dismutaseâ€1 with Targeted Molecular Binders.<br>Angewandte Chemie, 2018, 130, 6320-6323.                                                                                                          | 1.6  | 5         |
| 39 | Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC<br>Binding. Cell, 2018, 174, 672-687.e27.                                                                                                           | 13.5 | 229       |
| 40 | Allosteric Inhibitor of KRas Identified Using a Barcoded Assay Microchip Platform. Analytical<br>Chemistry, 2018, 90, 8824-8830.                                                                                                                  | 3.2  | 11        |
| 41 | Surface Immobilization of Redoxâ€Labile Fluorescent Probes: Enabling Singleâ€Cell Coâ€Profiling of Aerobic<br>Glycolysis and Oncogenic Protein Signaling Activities. Angewandte Chemie - International Edition,<br>2018, 57, 11554-11558.         | 7.2  | 13        |
| 42 | Surface Immobilization of Redox‣abile Fluorescent Probes: Enabling Singleâ€Cell Coâ€Profiling of Aerobic<br>Glycolysis and Oncogenic Protein Signaling Activities. Angewandte Chemie, 2018, 130, 11728-11732.                                     | 1.6  | 0         |
| 43 | Integrated measurement of intracellular proteins and transcripts in single cells. Lab on A Chip, 2018, 18, 3251-3262.                                                                                                                             | 3.1  | 16        |
| 44 | A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication. PLoS ONE, 2018, 13, e0191634.        | 1.1  | 12        |
| 45 | Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood, 2018, 132, 804-814.                                                                                                   | 0.6  | 246       |
| 46 | High-throughput screening of rare metabolically active tumor cells in pleural effusion and<br>peripheral blood of lung cancer patients. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, 2544-2549. | 3.3  | 67        |
| 47 | Single-cell analysis resolves the cell state transition and signaling dynamics associated with<br>melanoma drug-induced resistance. Proceedings of the National Academy of Sciences of the United<br>States of America, 2017, 114, 13679-13684.   | 3.3  | 196       |
| 48 | Protein catalyzed capture agents with tailored performance for <i>in vitro</i> and <i>in vivo</i> applications. Biopolymers, 2017, 108, e22934.                                                                                                   | 1.2  | 18        |
| 49 | Degradation of Akt using protein-catalyzed capture agents. Journal of Peptide Science, 2016, 22, 196-200.                                                                                                                                         | 0.8  | 36        |
| 50 | Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted<br>Combination Therapy in Glioblastoma. Cancer Cell, 2016, 29, 563-573.                                                                                   | 7.7  | 140       |
| 51 | Intercellular signaling through secreted proteins induces free-energy gradient-directed cell<br>movement. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113,<br>5520-5525.                               | 3.3  | 37        |
| 52 | Critical Points in Tumorigenesis: A Carcinogenâ€Initiated Phase Transition Analyzed via Singleâ€Cell<br>Proteomics. Small, 2016, 12, 1425-1431.                                                                                                   | 5.2  | 19        |
| 53 | A Thermodynamic-Based Interpretation of Protein Expression Heterogeneity in Different Clioblastoma<br>Multiforme Tumors Identifies Tumor-Specific Unbalanced Processes. Journal of Physical Chemistry B,<br>2016, 120, 5990-5997.                 | 1.2  | 11        |
| 54 | Single-cell analysis tools for drug discovery and development. Nature Reviews Drug Discovery, 2016, 15, 204-216.                                                                                                                                  | 21.5 | 407       |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Supramolecular Probes for Assessing Glutamine Uptake Enable Semi-Quantitative Metabolic Models in<br>Single Cells. Journal of the American Chemical Society, 2016, 138, 3085-3093.                                    | 6.6  | 33        |
| 56 | Domain-swapped T cell receptors improve the safety of TCR gene therapy. ELife, 2016, 5, .                                                                                                                             | 2.8  | 48        |
| 57 | 2D Materials: The Influence of Water on the Optical Properties of Single-Layer Molybdenum Disulfide<br>(Adv. Mater. 17/2015). Advanced Materials, 2015, 27, 2733-2733.                                                | 11.1 | 1         |
| 58 | Epitope Targeting of Tertiary Protein Structure Enables Targetâ€Guided Synthesis of a Potent Inâ€Cell<br>Inhibitor of Botulinum Neurotoxin. Angewandte Chemie - International Edition, 2015, 54, 7114-7119.           | 7.2  | 29        |
| 59 | A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands.<br>Angewandte Chemie - International Edition, 2015, 54, 13219-13224.                                                         | 7.2  | 46        |
| 60 | Nanotechnologies for biomedical science and translational medicine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14436-14443.                                          | 3.3  | 76        |
| 61 | Quantitative assessments of glycolysis from single cells. Technology, 2015, 03, 172-178.                                                                                                                              | 1.4  | 3         |
| 62 | Epitope Targeting of Tertiary Protein Structure Enables Targetâ€Guided Synthesis of a Potent Inâ€Cell<br>Inhibitor of Botulinum Neurotoxin. Angewandte Chemie, 2015, 127, 7220-7225.                                  | 1.6  | 4         |
| 63 | Chemical Methods for the Simultaneous Quantitation of Metabolites and Proteins from Single Cells.<br>Journal of the American Chemical Society, 2015, 137, 4066-4069.                                                  | 6.6  | 87        |
| 64 | A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH<br>domain of Akt1. Nature Chemistry, 2015, 7, 455-462.                                                        | 6.6  | 25        |
| 65 | Glioblastoma cellular architectures are predicted through the characterization of two-cell<br>interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014,<br>111, 6521-6526. | 3.3  | 52        |
| 66 | Human NK Cells Licensed by Killer Ig Receptor Genes Have an Altered Cytokine Program That Modifies<br>CD4+ T Cell Function. Journal of Immunology, 2014, 193, 940-949.                                                | 0.4  | 28        |
| 67 | Adoptive Transfer of MART-1 T-Cell Receptor Transgenic Lymphocytes and Dendritic Cell Vaccination in Patients with Metastatic Melanoma. Clinical Cancer Research, 2014, 20, 2457-2465.                                | 3.2  | 204       |
| 68 | Conversion of Danger Signals into Cytokine Signals by Hematopoietic Stem and Progenitor Cells for<br>Regulation of Stress-Induced Hematopoiesis. Cell Stem Cell, 2014, 14, 445-459.                                   | 5.2  | 276       |
| 69 | A Chemical Epitope‶argeting Strategy for Protein Capture Agents: The Serine 474 Epitope of the Kinase<br>Akt2. Angewandte Chemie - International Edition, 2013, 52, 13975-13979.                                      | 7.2  | 20        |
| 70 | Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research. Genome Medicine, 2013, 5, 75.                                                                | 3.6  | 46        |
| 71 | In situclick chemistry: from small molecule discovery to synthetic antibodies. Integrative Biology<br>(United Kingdom), 2013, 5, 87-95.                                                                               | 0.6  | 34        |
| 72 | A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical<br>Detection of Anthrax Protective Antigen. ACS Nano, 2013, 7, 9452-9460.                                         | 7.3  | 56        |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Proceedings of the United States of America, 2013, 110, E1352-60.                                                                                        | 3.3  | 61        |
| 74 | Multifunctional T-cell Analyses to Study Response and Progression in Adoptive Cell Transfer<br>Immunotherapy. Cancer Discovery, 2013, 3, 418-429.                                                                                              | 7.7  | 130       |
| 75 | A Cocktail of Thermally Stable, Chemically Synthesized Capture Agents for the Efficient Detection of Anti-Gp41 Antibodies from Human Sera. PLoS ONE, 2013, 8, e76224.                                                                          | 1.1  | 15        |
| 76 | Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 419-424.                                       | 3.3  | 300       |
| 77 | Iterative in Situ Click Chemistry Assembles a Branched Capture Agent and Allosteric Inhibitor for Akt1.<br>Journal of the American Chemical Society, 2011, 133, 18280-18288.                                                                   | 6.6  | 46        |
| 78 | A solid-state switch containing an electrochemically switchable bistable poly[n]rotaxane. Journal of<br>Materials Chemistry, 2011, 21, 1487-1495.                                                                                              | 6.7  | 45        |
| 79 | A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nature Medicine, 2011, 17, 738-743.                                                                        | 15.2 | 403       |
| 80 | High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors. Nano<br>Research, 2011, 4, 1005-1012.                                                                                                             | 5.8  | 19        |
| 81 | Chemistries for Patterning Robust DNA MicroBarcodes Enable Multiplex Assays of Cytoplasm Proteins<br>from Single Cancer Cells. ChemPhysChem, 2010, 11, 3063-3069.                                                                              | 1.0  | 47        |
| 82 | Accurate MALDI-TOF/TOF Sequencing of One-Beadâ~'One-Compound Peptide Libraries with Application to the Identification of Multiligand Protein Affinity Agents Using in Situ Click Chemistry Screening. Analytical Chemistry, 2010, 82, 672-679. | 3.2  | 24        |
| 83 | lterative In Situ Click Chemistry Creates Antibodyâ€like Proteinâ€Capture Agents. Angewandte Chemie -<br>International Edition, 2009, 48, 4944-4948.                                                                                           | 7.2  | 114       |
| 84 | Nanomedicine Targets Cancer. Scientific American, 2009, 300, 44-51.                                                                                                                                                                            | 1.0  | 31        |
| 85 | Modular Nucleic Acid Assembled p/MHC Microarrays for Multiplexed Sorting of Antigen-Specific T<br>Cells. Journal of the American Chemical Society, 2009, 131, 9695-9703.                                                                       | 6.6  | 84        |
| 86 | Molecular Electronics. Annual Review of Materials Research, 2009, 39, 1-23.                                                                                                                                                                    | 4.3  | 311       |
| 87 | Nanotechnology and Cancer. Annual Review of Medicine, 2008, 59, 251-265.                                                                                                                                                                       | 5.0  | 337       |
| 88 | Rapid Microwave-Assisted CNBr Cleavage of Bead-Bound Peptides. ACS Combinatorial Science, 2008, 10,<br>807-809.                                                                                                                                | 3.3  | 14        |
| 89 | DNA-Encoded Antibody Libraries:Â A Unified Platform for Multiplexed Cell Sorting and Detection of<br>Genes and Proteins. Journal of the American Chemical Society, 2007, 129, 1959-1967.                                                       | 6.6  | 255       |
| 90 | NanoSystems biology. Molecular Imaging and Biology, 2003, 5, 312-325.                                                                                                                                                                          | 1.3  | 68        |

| #  | Article                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Kinetic Inference Resolves Epigenetic Mechanism of Drug Resistance in Melanoma. SSRN Electronic<br>Journal, 0, , .                                     | 0.4 | 2         |
| 92 | Constraint-Based Reconstruction and Analyses of Metabolic Models: Open-Source Python Tools and Applications to Cancer. Frontiers in Oncology, 0, 12, . | 1.3 | 6         |