Chengming Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1703902/publications.pdf Version: 2024-02-01

CHENCMING HUANC

#	Article	IF	CITATIONS
1	Conforming and nonconforming VEMs for the fourth-order reaction–subdiffusion equation: a unified framework. IMA Journal of Numerical Analysis, 2022, 42, 2238-2300.	2.9	24
2	Numerical methods for stochastic Volterra integral equations with weakly singular kernels. IMA Journal of Numerical Analysis, 2022, 42, 2656-2683.	2.9	14
3	A two-parameter Milstein method for stochastic Volterra integral equations. Journal of Computational and Applied Mathematics, 2022, 404, 113870.	2.0	2
4	Delay dependent asymptotic mean square stability analysis of the stochastic exponential Euler method. Journal of Computational and Applied Mathematics, 2021, 382, 113068.	2.0	16
5	Mean-square stability and convergence of a split-step theta method for stochastic Volterra integral equations. Journal of Computational and Applied Mathematics, 2021, 382, 113077.	2.0	6
6	Asymptotic separation for stochastic Volterra integral equations with doubly singular kernels. Applied Mathematics Letters, 2021, 113, 106880.	2.7	6
7	Compensated projected Euler-Maruyama method for stochastic differential equations with superlinear jumps. Applied Mathematics and Computation, 2021, 393, 125760.	2.2	4
8	A linearized high-order Galerkin finite element approach for two-dimensional nonlinear time fractional Klein-Gordon equations. Numerical Algorithms, 2021, 87, 551-574.	1.9	3
9	Galerkinâ€Legendre spectral method for the nonlinear Ginzburgâ€Landau equation with the Riesz fractional derivative. Mathematical Methods in the Applied Sciences, 2021, 44, 2711-2730.	2.3	10
10	An accurate Legendre collocation method for third-kind Volterra integro-differential equations with non-smooth solutions. Numerical Algorithms, 2021, 88, 1571-1593.	1.9	2
11	Unconditional Energy Dissipation and Error Estimates of the SAV Fourier Spectral Method for Nonlinear Fractional Generalized Wave Equation. Journal of Scientific Computing, 2021, 88, 1.	2.3	7
12	Recovery of high order accuracy in spectral collocation method for linear Volterra integral equations of the third-kind with non-smooth solutions. Journal of Computational and Applied Mathematics, 2021, 392, 113458.	2.0	5
13	A high-order L2 type difference scheme for the time-fractional diffusion equation. Applied Mathematics and Computation, 2021, 411, 126545.	2.2	13
14	A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations. Numerical Algorithms, 2020, 83, 99-124.	1.9	24
15	Galerkin–Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation. International Journal of Computer Mathematics, 2020, 97, 1183-1196.	1.8	18
16	Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation. Numerical Algorithms, 2020, 84, 1081-1119.	1.9	22
17	Error estimates of structureâ€preserving Fourier pseudospectral methods for the fractional Schrödinger equation. Numerical Methods for Partial Differential Equations, 2020, 36, 369-393.	3.6	6
18	Projected Euler-Maruyama method for stochastic delay differential equations under a global monotonicity condition. Applied Mathematics and Computation, 2020, 366, 124733.	2.2	2

#	Article	IF	CITATIONS
19	Highly stable multistep Runge–Kutta methods for Volterra integral equations. Computational and Applied Mathematics, 2020, 39, 1.	2.2	2
20	A dissipation-preserving finite element method for nonlinear fractional wave equations on irregular convex domains. Mathematics and Computers in Simulation, 2020, 177, 404-419.	4.4	14
21	Dissipation-preserving Galerkin–Legendre spectral methods for two-dimensional fractional nonlinear wave equations. Computers and Mathematics With Applications, 2020, 80, 617-635.	2.7	12
22	A second-order implicit difference scheme for the nonlinear time-space fractional Schrödinger equation. Applied Numerical Mathematics, 2020, 153, 399-411.	2.1	9
23	Exponential fitting collocation methods for a class of Volterra integral equations. Applied Mathematics and Computation, 2020, 376, 125121.	2.2	2
24	A linearized conservative Galerkin–Legendre spectral method for the strongly coupled nonlinear fractional Schrödinger equations. Advances in Difference Equations, 2020, 2020, .	3.5	3
25	The Linear Barycentric Rational Quadrature Method for Auto-Convolution Volterra Integral Equations. Journal of Scientific Computing, 2019, 78, 549-564.	2.3	19
26	Stability analysis of Runge-Kutta methods for Volterra integro-differential equations. Applied Numerical Mathematics, 2019, 146, 73-88.	2.1	6
27	Nonconforming Virtual Element Method for the Time Fractional Reaction–Subdiffusion Equation with Non-smooth Data. Journal of Scientific Computing, 2019, 81, 1823-1859.	2.3	42
28	Barycentric rational collocation methods for Volterra integral equations with weakly singular kernels. Computational and Applied Mathematics, 2019, 38, 1.	2.2	6
29	A Spectral Penalty Method for Two-Sided Fractional Differential Equations with General Boundary Conditions. SIAM Journal of Scientific Computing, 2019, 41, A1840-A1866.	2.8	5
30	An efficient difference scheme for the coupled nonlinear fractional Ginzburg–Landau equations with the fractional Laplacian. Numerical Methods for Partial Differential Equations, 2019, 35, 394-421.	3.6	35
31	Asymptotic Results of Schwarz Waveform Relaxation Algorithm for Time Fractional Cable Equations. Communications in Computational Physics, 2019, 25, .	1.7	Ο
32	A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations. European Physical Journal Plus, 2018, 133, 1.	2.6	13
33	An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg–Landau equation. BIT Numerical Mathematics, 2018, 58, 783-805.	2.0	34
34	A fast linearized conservative finite element method for the strongly coupled nonlinear fractional SchrĶdinger equations. Journal of Computational Physics, 2018, 358, 256-282.	3.8	155
35	Optimal superconvergence results for Volterra functional integral equations with proportional vanishing delays. Applied Mathematics and Computation, 2018, 320, 292-301.	2.2	6
36	An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg–Landau equations. Computers and Mathematics With Applications, 2018, 75, 2223-2242.	2.7	29

#	Article	IF	CITATIONS
37	Structure-preserving numerical methods for the fractional Schrödinger equation. Applied Numerical Mathematics, 2018, 129, 137-158.	2.1	46
38	Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations. Computational and Applied Mathematics, 2018, 37, 2309-2334.	1.3	20
39	Unconditional error analysis of Galerkin FEMs for nonlinear fractional SchrĶdinger equation. Applicable Analysis, 2018, 97, 295-315.	1.3	16
40	Delay dependent stability of stochastic split-step Î, methods for stochastic delay differential equations. Applied Mathematics and Computation, 2018, 339, 663-674.	2.2	1
41	Galerkin finite element method for nonlinear fractional Schrödinger equations. Numerical Algorithms, 2017, 74, 499-525.	1.9	90
42	Galerkin finite element method for higher dimensional multi-term fractional diffusion equation on non-uniform meshes. Applicable Analysis, 2017, 96, 1269-1284.	1.3	20
43	ADI Galerkin FEMs for the 2D nonlinear time-space fractional diffusion-wave equation. International Journal of Modeling, Simulation, and Scientific Computing, 2017, 08, 1750025.	1.4	16
44	Galerkin finite element method for the nonlinear fractional Ginzburg–Landau equation. Applied Numerical Mathematics, 2017, 118, 131-149.	2.1	50
45	An adaptive Filon-type method for oscillatory integrals without stationary points. Numerical Algorithms, 2017, 75, 753-775.	1.9	10
46	Collocation methods for Volterra functional integral equations with non-vanishing delays. Applied Mathematics and Computation, 2017, 296, 198-214.	2.2	10
47	The moment exponential stability criterion of nonlinear hybrid stochastic differential equations and its discrete approximations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2016, 146, 1303-1328.	1.2	10
48	Point-wise error estimate of a conservative difference scheme for the fractional SchrĶdinger equation. Journal of Computational and Applied Mathematics, 2016, 306, 231-247.	2.0	68
49	Superconvergence in collocation methods for Volterra integral equations with vanishing delays. Journal of Computational and Applied Mathematics, 2016, 308, 361-378.	2.0	13
50	An implicit midpoint difference scheme for the fractional Ginzburg–Landau equation. Journal of Computational Physics, 2016, 312, 31-49.	3.8	62
51	Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. Computers and Mathematics With Applications, 2016, 71, 1114-1128.	2.7	35
52	Double-implicit and split two-step Milstein schemes for stochastic differential equations. International Journal of Computer Mathematics, 2016, 93, 1987-2011.	1.8	6
53	Stochastic exponential integrator for finite element spatial discretization of stochastic elastic equation. Computers and Mathematics With Applications, 2015, 69, 817-827.	2.7	3
54	Exponential mean square stability of the theta approximations for neutral stochastic differential delay equations. Journal of Computational and Applied Mathematics, 2015, 286, 172-185.	2.0	35

#	Article	IF	CITATIONS
55	Theta schemes for SDDEs with non-globally Lipschitz continuous coefficients. Journal of Computational and Applied Mathematics, 2015, 278, 258-277.	2.0	33
56	An energy conservative difference scheme for the nonlinear fractional SchrĶdinger equations. Journal of Computational Physics, 2015, 293, 238-251.	3.8	179
57	A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation. Numerical Algorithms, 2015, 69, 625-641.	1.9	54
58	Convergence analysis of spectral collocation methods for a class of weakly singular Volterra integral equations. Applied Mathematics and Computation, 2015, 250, 131-144.	2.2	5
59	The Stochastic <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mi mathvariant="normal">î~</mml:mi></mml:mrow></mml:math> -Method for Nonlinear Stochastic Volterra Integro-Differential Equations. Abstract and Applied Analysis, 2014, 2014. 1-13.	0.7	7
60	Strong Convergence of the Split-Step Theta Method for Stochastic Delay Differential Equations with Nonglobally Lipschitz Continuous Coefficients. Abstract and Applied Analysis, 2014, 2014, 1-9.	0.7	5
61	Some New Results on the Lotka-Volterra System with Variable Delay. Abstract and Applied Analysis, 2014, 2014, 1-10.	0.7	Ο
62	Mean square stability and dissipativity of two classes of thetaÂmethods for systems of stochastic delay differential equations. Journal of Computational and Applied Mathematics, 2014, 259, 77-86.	2.0	44
63	Spectral collocation method for linear fractional integro-differential equations. Applied Mathematical Modelling, 2014, 38, 1434-1448.	4.2	96
64	Strong convergence of split-step theta methods for non-autonomous stochastic differential equations. International Journal of Computer Mathematics, 2014, 91, 2260-2275.	1.8	14
65	Preserving exponential mean square stability and decay rates in two classes of theta approximations of stochastic differential equations. Journal of Difference Equations and Applications, 2014, 20, 1091-1111.	1.1	16
66	Convergence and stability of the semi-tamed Euler scheme for stochastic differential equations with non-Lipschitz continuous coefficients. Applied Mathematics and Computation, 2014, 228, 240-250.	2.2	33
67	Delay-dependent dissipativity of nonlinear delay differential equations. Applied Mathematics Letters, 2013, 26, 924-928.	2.7	5
68	Numerical solution of fractional integro-differential equations by a hybrid collocation method. Applied Mathematics and Computation, 2013, 219, 6750-6760.	2.2	82
69	The Boundedness and Exponential Stability Criterions for Nonlinear Hybrid Neutral Stochastic Functional Differential Equations. Abstract and Applied Analysis, 2013, 2013, 1-12.	0.7	2
70	Convergence analysis of the overlapping Schwarz waveform relaxation algorithm for reaction-diffusion equations with time delay. IMA Journal of Numerical Analysis, 2012, 32, 632-671.	2.9	9
71	Delay-dependent exponential stability of the backward Euler method for nonlinear stochastic delay differential equations. International Journal of Computer Mathematics, 2012, 89, 1039-1050.	1.8	11
72	Stochastic stability of a class of unbounded delay neutral stochastic differential equations with general decay rate. International Journal of Systems Science, 2012, 43, 308-318.	5.5	11

#	Article	IF	CITATIONS
73	Unconditionally stable difference methods for delay partial differential equations. Numerische Mathematik, 2012, 122, 579-601.	1.9	34
74	Delay-dependent stability analysis of numerical methods for stochastic delay differential equations. Journal of Computational and Applied Mathematics, 2012, 236, 3514-3527.	2.0	29
75	Exponential mean square stability of numerical methods for systems of stochastic differential equations. Journal of Computational and Applied Mathematics, 2012, 236, 4016-4026.	2.0	66
76	Existence results and the moment estimate for nonlocal stochastic differential equations with time-varying delay. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 405-416.	1.1	11
77	Quasi-optimized Schwarz methods for reaction diffusion equations with time delay. Journal of Mathematical Analysis and Applications, 2012, 385, 354-370.	1.0	2
78	Lasalle method and general decay stability of stochastic neural networks with mixed delays. Journal of Applied Mathematics and Computing, 2012, 38, 257-278.	2.5	8
79	Stability of stochastic <i>Î,</i> -methods for stochastic delay integro-differential equations. International Journal of Computer Mathematics, 2011, 88, 1417-1429.	1.8	17
80	General decay pathwise stability of neutral stochastic differential equations with unbounded delay. Acta Mathematica Sinica, English Series, 2011, 27, 2153-2168.	0.6	3
81	Analytical and numerical stability of nonlinear neutral delay integro-differential equations. Journal of the Franklin Institute, 2011, 348, 1082-1100.	3.4	8
82	Stochastic Lotka–Volterra models with multiple delays. Journal of Mathematical Analysis and Applications, 2011, 375, 42-57.	1.0	48
83	Two-step relaxation Newton algorithm for solving nonlinear algebraic equations. Journal of Applied Mathematics and Computing, 2010, 33, 459-470.	2.5	1
84	Delay-dependent stability analysis of trapezium rule for second order delay differential equations with three parameters. Journal of the Franklin Institute, 2010, 347, 1437-1451.	3.4	8
85	Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay. Systems and Control Letters, 2010, 59, 195-202.	2.3	75
86	Convergence and stability of numerical solutions to a class of index 1 stochastic differential algebraic equations with time delay. Applied Mathematics and Computation, 2010, 215, 4008-4021.	2.2	1
87	Two-Step Relaxation Newton Method for Nonsymmetric Algebraic Riccati Equations Arising from Transport Theory. Mathematical Problems in Engineering, 2009, 2009, 1-17.	1.1	6
88	Parareal-Richardson Algorithm for Solving Nonlinear ODEs and PDEs. Communications in Computational Physics, 2009, 6, 883-902.	1.7	10
89	Delay-dependent stability analysis of multistep methods for delay differential equations. Acta Mathematicae Applicatae Sinica, 2009, 25, 607-616.	0.7	5
90	Strong stability preserving hybrid methods. Applied Numerical Mathematics, 2009, 59, 891-904.	2.1	22

#	Article	IF	CITATIONS
91	Delay-dependent stability of high order Runge–Kutta methods. Numerische Mathematik, 2009, 111, 377-387.	1.9	23
92	Asymptotic stability of linear multistep methods for nonlinear neutral delay differential equations. Applied Mathematics and Computation, 2009, 211, 95-101.	2.2	14
93	Robustness of exponential stability of a class of stochastic functional differential equations with infinite delay. Automatica, 2009, 45, 2577-2584.	5.0	40
94	Convergence analysis of waveform relaxation methods for neutral differential-functional systems. Journal of Computational and Applied Mathematics, 2009, 223, 263-277.	2.0	4
95	Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays. Frontiers of Mathematics in China, 2009, 4, 63-87.	0.7	28
96	Newton waveform relaxation method for solving algebraic nonlinear equations. Applied Mathematics and Computation, 2008, 201, 553-560.	2.2	8
97	Asymptotic stability of multistep methods for nonlinear delay differential equations. Applied Mathematics and Computation, 2008, 203, 908-912.	2.2	6
98	Stability of linear multistep methods for delay integro-differential equations. Computers and Mathematics With Applications, 2008, 55, 2830-2838.	2.7	28
99	Stability analysis of general linear methods for the nonautonomous pantograph equation. IMA Journal of Numerical Analysis, 2008, 29, 444-465.	2.9	10
100	Discretized Stability and Error Growth of The Nonautonomous Pantograph Equation. SIAM Journal on Numerical Analysis, 2005, 42, 2020-2042.	2.3	30
101	Dissipativity of multistep runge-kutta methods for dynamical systems with delays. Mathematical and Computer Modelling, 2004, 40, 1285-1296.	2.0	22
102	An Analysis of Delay-Dependent Stability for Ordinary and Partial Differential Equations with Fixed and Distributed Delays. SIAM Journal of Scientific Computing, 2004, 25, 1608-1632.	2.8	75
103	B-convergence of general linear methods for stiff problems. Applied Numerical Mathematics, 2003, 47, 31-44.	2.1	3
104	Linear stability of numerical methods for systems of functional differential equations with a proportional delay*. Progress in Natural Science: Materials International, 2003, 13, 329-333.	4.4	3
105	Linear stability of numerical methods for systems of functional differential equations with a proportional delay. Progress in Natural Science: Materials International, 2003, 13, 329.	4.4	Ο
106	Stability analysis of numerical methods for systems of functional-differential and functional equations. Computers and Mathematics With Applications, 2002, 44, 717-729.	2.7	10
107	Nonlinear Stability of General Linear Methods for Delay Differential Equations. BIT Numerical Mathematics, 2002, 42, 380-392.	2.0	19
108	Convergence Results of One-Leg and Linear Multistep Methods for Multiply Stiff Singular Perturbation Problems. Computing (Vienna/New York), 2001, 66, 365-375.	4.8	5

#	Article	lF	CITATIONS
109	Linear stability of general linear methods for systems of neutral delay differential equations. Applied Mathematics Letters, 2001, 14, 1017-1021.	2.7	14
110	D-Convergence of general linear methods for stiff delay differential equations. Computers and Mathematics With Applications, 2001, 41, 627-639.	2.7	6
111	The asymptotic stability of multistep multiderivative methods for systems of delay differential equations. Communications in Nonlinear Science and Numerical Simulation, 2000, 5, 24-26.	3.3	0
112	Dissipativity of one-leg methods for dynamical systems with delays. Applied Numerical Mathematics, 2000, 35, 11-22.	2.1	33
113	Dissipativity of Runge-Kutta methods for dynamical systems with delays. IMA Journal of Numerical Analysis, 2000, 20, 153-166.	2.9	59
114	Stability and error analysis of one-leg methods for nonlinear delay differential equations. Journal of Computational and Applied Mathematics, 1999, 103, 263-279.	2.0	63
115	Stability Analysis of Runge-Kutta Methods for Non-Linear Delay Differential Equations. BIT Numerical Mathematics, 1999, 39, 270-280.	2.0	42
116	The generalized quadrature method for a class of highly oscillatory Volterra integral equations. Numerical Algorithms, 0, , .	1.9	0