
Amit Kumar Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1703359/publications.pdf Version: 2024-02-01

AMIT KUMAD DAS

#	Article	IF	CITATIONS
1	Entire onion source-derived redox porous carbon electrodes towards efficient quasi-solid-state solar charged hybrid supercapacitor. Journal of Materials Science and Technology, 2022, 125, 118-127.	10.7	7
2	A Quasi-Solid-State Asymmetric Supercapacitor Device Based on Honeycomb-like Nickel–Copper–Carbonate–Hydroxide as a Positive and Iron Oxide as a Negative Electrode with Superior Electrochemical Performances. ACS Applied Electronic Materials, 2020, 2, 177-185.	4.3	34
3	A polypyrrole-adorned, self-supported, pseudocapacitive zinc vanadium oxide nanoflower and nitrogen-doped reduced graphene oxide-based asymmetric supercapacitor device for power density applications. New Journal of Chemistry, 2020, 44, 1063-1075.	2.8	35
4	Nanostructured cigarette wrapper encapsulated <scp>PDMSâ€RGO</scp> sandwiched composite for high performance <scp>EMI</scp> shielding applications. Polymer Engineering and Science, 2020, 60, 3056-3071.	3.1	15
5	Approach for Enhancement in Output Performance of Randomly Oriented ZnSnO ₃ Nanorod-Based Piezoelectric Nanogenerator via p–n Heterojunction and Surface Passivation Layer. ACS Applied Electronic Materials, 2020, 2, 2565-2578.	4.3	22
6	<i>In situ</i> -grown organo-lead bromide perovskite-induced electroactive γ-phase in aerogel PVDF films: an efficient photoactive material for piezoelectric energy harvesting and photodetector applications. Nanoscale, 2020, 12, 7214-7230.	5.6	44
7	A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification. Journal of Materials Chemistry A, 2019, 7, 3979-3991.	10.3	70
8	Fabrication of an Advanced Asymmetric Supercapacitor Based on Three-Dimensional Copper–Nickel–Cerium–Cobalt Quaternary Oxide and GNP for Energy Storage Application. ACS Applied Electronic Materials, 2019, 1, 189-197.	4.3	66
9	Highly Rate Capable Nanoflower-like NiSe and WO ₃ @PPy Composite Electrode Materials toward High Energy Density Flexible All-Solid-State Asymmetric Supercapacitor. ACS Applied Electronic Materials, 2019, 1, 977-990.	4.3	86
10	Morphological interference of two different cobalt oxides derived from a hydrothermal protocol and a single two-dimensional metal organic framework precursor to stabilize the Î ² -phase of PVDF for flexible piezoelectric nanogenerators. Nanoscale, 2019, 11, 22989-22999.	5.6	47
11	Triboelectric Nanogenerator Driven Self-Charging and Self-Healing Flexible Asymmetric Supercapacitor Power Cell for Direct Power Generation. ACS Applied Materials & Interfaces, 2019, 11, 5022-5036.	8.0	63
12	Temperature dependent substrate-free facile synthesis for hierarchical sunflower-like nickel–copper carbonate hydroxide with superior electrochemical performance for solid state asymmetric supercapacitor. Chemical Engineering Journal, 2018, 343, 44-53.	12.7	38
13	A strategy to develop an efficient piezoelectric nanogenerator through ZTO assisted Î ³ -phase nucleation of PVDF in ZTO/PVDF nanocomposite for harvesting bio-mechanical energy and energy storage application. Materials Chemistry and Physics, 2018, 213, 525-537.	4.0	71
14	Insight into Cigarette Wrapper and Electroactive Polymer Based Efficient TENG as Biomechanical Energy Harvester for Smart Electronic Applications. ACS Applied Energy Materials, 2018, 1, 4963-4975.	5.1	26
15	High performance advanced asymmetric supercapacitor based on ultrathin and mesoporous MnCo2O4.5-NiCo2O4 hybrid and iron oxide decorated reduced graphene oxide electrode materials. Electrochimica Acta, 2018, 283, 438-447.	5.2	47
16	An Approach To Fabricate PDMS Encapsulated All-Solid-State Advanced Asymmetric Supercapacitor Device with Vertically Aligned Hierarchical Zn–Fe–Co Ternary Oxide Nanowire and Nitrogen Doped Graphene Nanosheet for High Power Device Applications. ACS Applied Materials & Interfaces, 2017, 9, 5947-5958.	8.0	81
17	A Mesoporous High-Performance Supercapacitor Electrode Based on Polypyrrole Wrapped Iron Oxide Decorated Nanostructured Cobalt Vanadium Oxide Hydrate with Enhanced Electrochemical Capacitance. Industrial & Engineering Chemistry Research, 2017, 56, 2444-2457.	3.7	42
18	Polyaniline/α-Ni(OH)2/iron oxide-doped reduced graphene oxide-based hybrid electrode material. Journal of Applied Electrochemistry, 2017, 47, 531-546.	2.9	12

#	Article	IF	CITATIONS
19	Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO ₂ hybrid and PANI/GNP composite with excellent electrochemical behaviour. Journal of Materials Chemistry A, 2017, 5, 22242-22254.	10.3	75
20	Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator. Nano Energy, 2017, 40, 633-645.	16.0	89
21	Effect of Î ³ -PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications. RSC Advances, 2016, 6, 37773-37783.	3.6	58
22	A Facile Approach To Develop a Highly Stretchable PVC/ZnSnO ₃ Piezoelectric Nanogenerator with High Output Power Generation for Powering Portable Electronic Devices. Industrial & Engineering Chemistry Research, 2016, 55, 10671-10680.	3.7	75
23	An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Selfâ€Poled PVDF/AlOâ€rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency. Advanced Energy Materials, 2016, 6, 1601016.	19.5	324
24	Carbon nanohornâ€graphene nanoplate hybrid: An excellent electrode material for supercapacitor application. Journal of Applied Polymer Science, 2015, 132, .	2.6	13
25	Single wall carbon nanohorn (SWCNH)/graphene nanoplate/poly(methyl methacrylate) nanocomposites: a promising material for electromagnetic interference shielding applications. RSC Advances, 2015, 5, 70482-70493.	3.6	21
26	High Energy Density Ternary Composite Electrode Material Based on Polyaniline (PANI), Molybdenum trioxide (MoO3) and Graphene Nanoplatelets (GNP) Prepared by Sono-Chemical Method and Their Synergistic Contributions in Superior Supercapacitive Performance. Electrochimica Acta, 2015, 180, 1-15.	5.2	96
27	Effect of nanoclay on the morphology and properties of acrylonitrile butadiene styrene toughened polyoxymethylene (POM)/clay nanocomposites. Polymer Composites, 2014, 35, 273-282.	4.6	26