Federica De Leo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1703304/publications.pdf

Version: 2024-02-01

21 papers 739 citations

687363 13 h-index 752698 20 g-index

24 all docs

24 docs citations

times ranked

24

1549 citing authors

#	Article	IF	CITATIONS
1	Discovery of 5,5′-Methylenedi-2,3-Cresotic Acid as a Potent Inhibitor of the Chemotactic Activity of the HMGB1·CXCL12 Heterocomplex Using Virtual Screening and NMR Validation. Frontiers in Chemistry, 2020, 8, 598710.	3.6	3
2	1,8,10-Trisubstituted anthracenyl hydrocarbons: Towards versatile scaffolds for multiple-H-bonded recognition arrays. Tetrahedron, 2020, 76, 131299.	1.9	3
3	Diflunisal targets the <scp>HMGB</scp> 1/ <scp>CXCL</scp> 12 heterocomplex and blocks immune cell recruitment. EMBO Reports, 2019, 20, e47788.	4.5	34
4	Tailoring Colors by O Annulation of Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2017, 23, 2363-2378.	3.3	55
5	Versatile Self-Adapting Boronic Acids for H-Bond Recognition: From Discrete to Polymeric Supramolecules. Journal of the American Chemical Society, 2017, 139, 2710-2727.	13.7	41
6	A Twisted Bayâ€Substituted Quaterrylene Phosphorescing in the <scp>NIR</scp> Spectral Region. Helvetica Chimica Acta, 2017, 100, e1700192.	1.6	7
7	Unfolding IGDQ Peptides for Engineering Motogenic Interfaces. Langmuir, 2017, 33, 7512-7528.	3.5	2
8	Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides. Small, 2016, 12, 321-329.	10.0	8
9	HMGB1 as biomarker and drug target. Pharmacological Research, 2016, 111, 534-544.	7.1	214
10	Cancer Cells: Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides (Small 3/2016). Small, 2016, 12, 266-266.	10.0	0
11	[60]Fullerene–porphyrin [n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response. Physical Chemistry Chemical Physics, 2016, 18, 11858-11868.	2.8	18
12	Walking Down the Chalcogenic Group of the Periodic Table: From Singlet to Triplet Organic Emitters. Chemistry - A European Journal, 2015, 21, 15377-15387.	3.3	51
13	Templated Chromophore Assembly by Dynamic Covalent Bonds. Angewandte Chemie, 2015, 127, 15965-15969.	2.0	13
14	Templated Chromophore Assembly by Dynamic Covalent Bonds. Angewandte Chemie - International Edition, 2015, 54, 15739-15743.	13.8	47
15	Interfacing proteins with graphitic nanomaterials: from spontaneous attraction to tailored assemblies. Chemical Society Reviews, 2015, 44, 6916-6953.	38.1	91
16	2,5â€Diamideâ€Substituted Fiveâ€Membered Heterocycles: Challenging Molecular Synthons. European Journal of Organic Chemistry, 2014, 2014, 5487-5500.	2.4	15
17	Structural and Dynamic Properties of Monoclonal Antibodies Immobilized on CNTs: A Computational Study. Chemistry - A European Journal, 2013, 19, 12281-12293.	3.3	24
18	NLO Response of Photoswitchable Azobenzeneâ€Based Materials. ChemPhysChem, 2013, 14, 2961-2972.	2.1	49

#	Article	IF	CITATIONS
19	Functionalized Feâ€Filled Multiwalled Carbon Nanotubes as Multifunctional Scaffolds for Magnetization of Cancer Cells. Advanced Functional Materials, 2013, 23, 3173-3184.	14.9	58
20	Magnetic Carbon Nanotubes: Functionalized Fe-Filled Multiwalled Carbon Nanotubes as Multifunctional Scaffolds for Magnetization of Cancer Cells (Adv. Funct. Mater. 25/2013). Advanced Functional Materials, 2013, 23, 3172-3172.	14.9	1
21	Carbon Nanotubeâ€Based Metalâ€lon Catchers as Supramolecular Depolluting Materials. ChemSusChem, 2011, 4, 1464-1469.	6.8	4