
Georgios Vernardos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1703239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1129-1150.	4.4	120
2	The <i>Herschel</i> -ATLAS: a sample of 500Âî¼m-selected lensed galaxies over 600Âdeg ² . Monthly Notices of the Royal Astronomical Society, 2017, 465, 3558-3580.	4.4	96
3	The strong gravitational lens finding challenge. Astronomy and Astrophysics, 2019, 625, A119.	5.1	75
4	LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3879-3896.	4.4	63
5	New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey. Astrophysical Journal, 2020, 899, 30.	4.5	46
6	The impact of microlensing on the standardization of strongly lensed Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5081-5090.	4.4	40
7	KiDS-SQuaD: The KiDS Strongly lensed Quasar Detection project. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1163-1173.	4.4	36
8	GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS. Astrophysical Journal, Supplement Series, 2014, 211, 16.	7.7	33
9	SEAGLE – I. A pipeline for simulating and modelling strong lenses from cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4108-4125.	4.4	24
10	Testing Convolutional Neural Networks for finding strong gravitational lenses in KiDS. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	23
11	High-quality Strong Lens Candidates in the Final Kilo-Degree Survey Footprint. Astrophysical Journal, 2021, 923, 16.	4.5	20
12	A new parameter space study of cosmological microlensing. Monthly Notices of the Royal Astronomical Society, 2013, 434, 832-847.	4.4	19
13	Adventures in the microlensing cloud: Large datasets, eResearch tools, and GPUs. Astronomy and Computing, 2014, 6, 1-18.	1.7	18
14	HST imaging of four gravitationally lensed quasars. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4796-4814.	4.4	18
15	GERLUMPH DATA RELEASE 2:2.5 BILLION SIMULATED MICROLENSING LIGHT CURVES. Astrophysical Journal, Supplement Series, 2015, 217, 23.	7.7	16
16	Projected Cosmological Constraints from Strongly Lensed Supernovae with the Roman Space Telescope. Astrophysical Journal, 2021, 908, 190.	4.5	15
17	The effect of macromodel uncertainties on microlensing modelling of lensed quasars. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1223-1234.	4.4	11
18	Quasar microlensing light-curve analysis using deep machine learning. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1944-1952.	4.4	11

#	Article	IF	CITATIONS
19	A quasar microlensing light-curve generator for LSST. Monthly Notices of the Royal Astronomical Society, 2020, 495, 544-553.	4.4	10
20	Quantifying the structure of strong gravitational lens potentials with uncertainty-aware deep neural networks. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5641-5652.	4.4	10
21	Microlensing flux ratio predictions for Euclid. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5583-5594.	4.4	9
22	SEAGLE – II. Constraints on feedback models in galaxy formation from massive early-type strong-lens galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3455-3477.	4.4	9
23	A joint microlensing analysis of lensing mass and accretion disc models. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4675-4683.	4.4	8
24	Spectroscopic confirmation and modelling of two lensed quadruple quasars in the Dark Energy Survey public footprint. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5086-5095.	4.4	8
25	Constraining quasar structure using high-frequency microlensing variations and continuum reverberation. Astronomy and Astrophysics, 2022, 659, A21.	5.1	8
26	Data compression in the petascale astronomy era: A GERLUMPH case study. Astronomy and Computing, 2015, 12, 200-211.	1.7	7
27	Discovery of Two Einstein Crosses from Massive Post-blue Nugget Galaxies at zÂ>Â1 in KiDS*. Astrophysical Journal Letters, 2020, 904, L31.	8.3	6
28	Simulating time-varying strong lenses. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4417-4429.	4.4	6
29	SEAGLE – III: Towards resolving the mismatch in the dark-matter fraction in early-type galaxies between simulations and observations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1245-1251.	4.4	3