Simon Melov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1703044/publications.pdf

Version: 2024-02-01

99 papers 16,865 citations

19608 61 h-index 100 g-index

108 all docs

 $\frac{108}{\text{docs citations}}$

108 times ranked 19627 citing authors

#	Article	IF	CITATIONS
1	Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types. IScience, 2022, 25, 103848.	1.9	17
2	Dietary restriction and the transcription factor clock delay eye aging to extend lifespan in Drosophila Melanogaster. Nature Communications, 2022, 13, .	5.8	12
3	Superoxide produced by mitochondrial site IQ inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radical Biology and Medicine, 2021, 164, 223-232.	1.3	14
4	Longitudinal Functional Study of Murine Aging: A Resource for Future Study Designs. JBMR Plus, 2021, 5, e10466.	1.3	8
5	Tumor Necrosis Factor Alpha-Mediated Inflammation and Remodeling of the Extracellular Matrix Underlies Aortic Stiffening Induced by the Common Chemotherapeutic Agent Doxorubicin. Hypertension, 2021, 77, 1581-1590.	1.3	20
6	Accelerated aging of the brain transcriptome by the common chemotherapeutic doxorubicin. Experimental Gerontology, 2021, 152, 111451.	1.2	9
7	From discoveries in ageing research to therapeutics for healthy ageing. Nature, 2019, 571, 183-192.	13.7	730
8	Expression patterns of cardiac aging in <i>Drosophila</i> . Aging Cell, 2017, 16, 82-92.	3.0	50
9	Adrenergic Receptors in Individual Ventricular Myocytes. Circulation Research, 2017, 120, 1103-1115.	2.0	95
10	Long-term calorie restriction in humans is not associated with indices of delayed immunologic aging: A descriptive study. Nutrition and Healthy Aging, 2017, 4, 147-156.	0.5	20
11	Response by Simpson et al to Letter Regarding Article, "Adrenergic Receptors in Individual Ventricular Myocytes: the Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent― Circulation Research, 2017, 120, e56-e57.	2.0	1
12	Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discovery, 2017, 7, 165-176.	7.7	881
13	Analysis of individual cells identifies cellâ€toâ€cell variability following induction of cellular senescence. Aging Cell, 2017, 16, 1043-1050.	3.0	182
14	mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance. Cell Stem Cell, 2017, 21, 806-818.e5.	5.2	87
15	Uncovering the Dark Energy of Aging. Cell Systems, 2016, 3, 328-330.	2.9	2
16	Suppressors of Superoxide-H 2 O 2 Production at Site I Q of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury. Cell Metabolism, 2016, 24, 582-592.	7.2	162
17	Geroscience approaches to increase healthspan and slow aging. F1000Research, 2016, 5, 785.	0.8	21
18	Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington's Disease Neural Stem Cells. Stem Cell Reports, 2015, 5, 1023-1038.	2.3	117

#	Article	IF	Citations
19	Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10407-10412.	3.3	67
20	Translational Geroscience: Emphasizing function to achieve optimal longevity. Aging, 2014, 6, 718-730.	1.4	65
21	Genomeâ€wide <scp>DNA</scp> methylation changes with age in diseaseâ€free human skeletal muscle. Aging Cell, 2014, 13, 360-366.	3.0	145
22	Medical research: Treat ageing. Nature, 2014, 511, 405-407.	13.7	211
23	Single cell gene expression profiling of cortical osteoblast lineage cells. Bone, 2013, 53, 174-181.	1.4	8
24	SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radical Biology and Medicine, 2013, 62, 4-12.	1.3	254
25	Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell, 2013, 12, 851-862.	3.0	258
26	Age-related micro-RNA abundance in individual C. elegans. Aging, 2013, 5, 394-411.	1.4	29
27	Massage Therapy Attenuates Inflammatory Signaling After Exercise-Induced Muscle Damage. Science Translational Medicine, 2012, 4, 119ra13.	5.8	223
28	Proteogenomics of synaptosomal mitochondrial oxidative stress. Free Radical Biology and Medicine, 2012, 53, 1048-1060.	1.3	16
29	No Consistent Bioenergetic Defects in Presynaptic Nerve Terminals Isolated from Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2012, 32, 16775-16784.	1.7	27
30	Genetic Correction of Huntington's Disease Phenotypes in Induced Pluripotent Stem Cells. Cell Stem Cell, 2012, 11, 253-263.	5.2	336
31	Intramyocellular Fatty-Acid Metabolism Plays a Critical Role in Mediating Responses to Dietary Restriction in Drosophila melanogaster. Cell Metabolism, 2012, 16, 97-103.	7.2	147
32	Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: Implications for Parkinson's disease. Free Radical Biology and Medicine, 2012, 53, 993-1003.	1.3	152
33	Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging, 2012, 4, 3-12.	1.4	215
34	cep-1/p53-dependent dysplastic pathology of the aging C. elegans gonad. Aging, 2012, 4, 256-269.	1.4	34
35	Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4135-4140.	3.3	313
36	Life Span Extension via elF4G Inhibition Is Mediated by Posttranscriptional Remodeling of Stress Response Gene Expression in C.Âelegans. Cell Metabolism, 2011, 14, 55-66.	7.2	124

#	Article	IF	Citations
37	Single Cell Transcriptional Profiling of Adult Mouse Cardiomyocytes. Journal of Visualized Experiments, 2011, , e3302.	0.2	13
38	Loss of intestinal nuclei and intestinal integrity in aging <i>C.Âelegans</i> . Aging Cell, 2011, 10, 699-710.	3.0	135
39	Cellular senescence: A link between cancer and age-related degenerative disease?. Seminars in Cancer Biology, 2011, 21, 354-9.	4.3	339
40	On the Programmed/Non-Programmed Nature of Ageing within the Life History. Current Biology, 2011, 21, R701-R707.	1.8	193
41	The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Experimental Gerontology, 2011, 46, 441-452.	1.2	69
42	Impaired spare respiratory capacity in cortical synaptosomes from Sod2 null mice. Free Radical Biology and Medicine, 2011, 50, 866-873.	1.3	34
43	Human Embryonic Stem Cells Express Elevated Levels of Multiple Pro-Apoptotic BCL-2 Family Members. PLoS ONE, 2011, 6, e28530.	1.1	34
44	Eccentric Exercise Activates Novel Transcriptional Regulation of Hypertrophic Signaling Pathways Not Affected by Hormone Changes. PLoS ONE, 2010, 5, e10695.	1.1	39
45	Insulin-like Signaling Determines Survival during Stress via Posttranscriptional Mechanisms in C. elegans. Cell Metabolism, 2010, 12, 260-272.	7.2	113
46	A Human Protein Interaction Network Shows Conservation of Aging Processes between Human and Invertebrate Species. PLoS Genetics, 2009, 5, e1000414.	1.5	106
47	Increase in mitochondrial biogenesis, oxidative stress, and glycolysis in murine lymphomas. Free Radical Biology and Medicine, 2009, 46, 387-396.	1.3	48
48	Limb Immobilization Induces a Coordinate Down-Regulation of Mitochondrial and Other Metabolic Pathways in Men and Women. PLoS ONE, 2009, 4, e6518.	1.1	147
49	Ageâ€related behaviors have distinct transcriptional profiles in <i>CaenorhabditisÂelegans</i> . Aging Cell, 2008, 7, 850-865.	3.0	70
50	Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiological Genomics, 2008, 32, 219-228.	1.0	116
51	Pharmacogenetic Analysis of Lithium-induced Delayed Aging in Caenorhabditis elegans. Journal of Biological Chemistry, 2008, 283, 350-357.	1.6	166
52	Resistance Exercise Reverses Aging in Human Skeletal Muscle. PLoS ONE, 2007, 2, e465.	1.1	267
53	Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau. PLoS ONE, 2007, 2, e536.	1.1	291
54	Dramatic age-related changes in nuclear and genome copy number in the nematode Caenorhabditis elegans. Aging Cell, 2007, 6, 179-188.	3.0	45

#	Article	IF	CITATIONS
55	Microarray analysis of variation in individual aging C. elegans: Approaches and challenges. Experimental Gerontology, 2006, 41, 1040-1045.	1.2	22
56	Pol II–Expressed shRNA Knocks Down Sod2 Gene Expression and Causes Phenotypes of the Gene Knockout in Mice. PLoS Genetics, 2006, 2, e10.	1.5	75
57	Nigrostriatal Dopaminergic Neurodegeneration in the Weaver Mouse Is Mediated via Neuroinflammation and Alleviated by Minocycline Administration. Journal of Neuroscience, 2006, 26, 11644-11651.	1.7	47
58	Mitochondrial Reactive Oxygen Species in Mice Lacking Superoxide Dismutase 2. Journal of Biological Chemistry, 2006, 281, 3354-3359.	1.6	58
59	Science fact and the SENS agenda. EMBO Reports, 2005, 6, 1006-1008.	2.0	61
60	Hyperplasia, reduced E-cadherin expression, and developmental arrest in mammary glands oxidatively stressed by loss of mitochondrial superoxide dismutase. Breast, 2005, 14, 256-263.	0.9	13
61	Mice transgenic for Alzheimer disease ?-amyloid develop lens cataracts that are rescued by antioxidant treatment. Free Radical Biology and Medicine, 2005, 38, 258-261.	1.3	77
62	Pharmacogenomic profiling of an oxidative stress-mediated spongiform encephalopathy. Free Radical Biology and Medicine, 2005, 39, 152-163.	1.3	7
63	Biomarker Discovery and Analysis Platform: Application to Alzheimer's Disease. BioTechniques, 2005, 39, 606-607.	0.8	4
64	Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB Journal, 2005, 19, 1498-1500.	0.2	365
65	Alzheimer disease \hat{l}^2 -amyloid activity mimics cholesterol oxidase. Journal of Clinical Investigation, 2005, 115, 2556-2563.	3.9	125
66	Proteomic Analysis of Mitochondrial Proteins. International Review of Neurobiology, 2004, 61, 31-48.	0.9	0
67	Microarrays as a Tool to Investigate the Biology of Aging: A Retrospective and a Look to the Future. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, re7-re7.	0.9	26
68	Microarray analysis of gene expression with age in individual nematodes. Aging Cell, 2004, 3, 111-124.	3.0	90
69	Microscale fractionation facilitates detection of differentially expressed proteins in Alzheimer's disease brain samples. Electrophoresis, 2004, 25, 2557-2563.	1.3	10
70	Modeling mitochondrial function in aging neurons. Trends in Neurosciences, 2004, 27, 601-606.	4.2	95
71	Gene expression profiling in mitochondrial disease: assessment of microarray accuracy by high-throughput Q-PCR. Mitochondrion, 2004, 4, 453-470.	1.6	29
72	Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. Journal of Neurochemistry, 2003, 88, 657-667.	2.1	170

#	Article	IF	Citations
73	Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts. Aging Cell, 2003, 2, 277-285.	3.0	99
74	Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature Cell Biology, 2003, 5, 741-747.	4.6	1,003
75	Animal Models of Oxidative Stress and Aging. , 2003, , .		0
76	Applied Proteomics. Circulation Research, 2002, 90, 380-389.	2.0	81
77	Animal models of oxidative stress, aging, and therapeutic antioxidant interventions. International Journal of Biochemistry and Cell Biology, 2002, 34, 1395-1400.	1.2	90
78	â€~…and C is for Clioquinol' – the Al̂²Cs of Alzheimer's disease. Trends in Neurosciences, 2002, 25, 121-1	.23.2	23
79	Oxidative stress and aging: beyond correlation. Aging Cell, 2002, 1, 117-123.	3.0	281
80	Therapeutics against Mitochondrial Oxidative Stress in Animal Models of Aging. Annals of the New York Academy of Sciences, 2002, 959, 330-340.	1.8	65
81	Spotlight on Nematode Mitochondria in RNAi Mega-Screen. Science of Aging Knowledge Environment: SAGE KE, 2002, 2002, 18pe-18.	0.9	3
82	Lifespan Extension and Rescue of Spongiform Encephalopathy in Superoxide Dismutase 2 Nullizygous Mice Treated with Superoxide Dismutase–Catalase Mimetics. Journal of Neuroscience, 2001, 21, 8348-8353.	1.7	280
83	Mitochondrial DNA mutations, oxidative stress, and aging. Mechanisms of Ageing and Development, 2001, 122, 1577-1589.	2.2	103
84	The Buck Institute for Age Research. Experimental Gerontology, 2001, 36, 205-208.	1.2	1
85	Extension of Life-Span with Superoxide Dismutase/Catalase Mimetics. Science, 2000, 289, 1567-1569.	6.0	876
86	Mitochondrial Oxidative Stress: Physiologic Consequences and Potential for a Role in Aging. Annals of the New York Academy of Sciences, 2000, 908, 219-225.	1.8	137
87	Mitochondrial disease in mouse results in increased oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4820-4825.	3.3	576
88	Mitochondrial disease in superoxide dismutase 2 mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 846-851.	3.3	535
89	Mouse models of mitochondrial disease, oxidative stress, and senescence. Mutation Research DNA Repair, 1999, 434, 233-242.	3.8	80
90	Mitochondrial biology, degenerative diseases and aging. BioFactors, 1998, 7, 187-190.	2.6	105

SIMON MELOV

#	Article	IF	CITATION
91	A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nature Genetics, 1998, 18, 159-163.	9.4	477
92	Radicals r'aging. Nature Genetics, 1998, 19, 105-106.	9.4	496
93	Multi-Organ Characterization of Mitochondrial Genomic Rearrangements in Ad Libitum and Caloric Restricted Mice Show Striking Somatic Mitochondrial DNA Rearrangements with Age. Nucleic Acids Research, 1997, 25, 974-982.	6.5	110
94	Free Radicals and Antioxidants in Otolaryngology. Otolaryngology - Head and Neck Surgery, 1996, 115, P157-P157.	1.1	0
95	Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7540-7544.	3.3	814
96	Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genetics, 1995, 11, 376-381.	9.4	1,609
97	Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Research, 1995, 23, 4122-4126.	6.5	256
98	Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Research, 1995, 23, 1419-1425.	6.5	110
99	Detection of deletions in the mitochondrial genome ofCaenorhabditis elegans. Nucleic Acids Research, 1994, 22, 1075-1078.	6.5	73