Richard K Haynes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1703000/publications.pdf

Version: 2024-02-01

193 papers 7,322 citations

66250 44 h-index 75 g-index

219 all docs 219 docs citations

219 times ranked 5306 citing authors

#	Article	IF	CITATIONS
1	In vitro antischistosomal activity of Artemisia annua and Artemisia afra extracts. Phytomedicine Plus, 2022, 2, 100279.	0.9	8
2	Adapting Clofazimine for Treatment of Cutaneous Tuberculosis by Using Self-Double-Emulsifying Drug Delivery Systems. Antibiotics, 2022, 11, 806.	1.5	8
3	In Vitro Activity of the Arylaminoartemisinin GC012 against Helicobacter pylori and Its Effects on Biofilm. Pathogens, 2022, $11,740$.	1.2	4
4	Varying degrees of homostructurality in a series of cocrystals of antimalarial drug 11-azaartemisinin with salicylic acids. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 262-270.	0.2	4
5	Toward New Transmission-Blocking Combination Therapies: Pharmacokinetics of 10-Amino-Artemisinins and 11-Aza-Artemisinin and Comparison with Dihydroartemisinin and Artemether. Antimicrobial Agents and Chemotherapy, 2021, 65, e0099021.	1.4	12
6	Intracellular Accumulation of Novel and Clinically Used TB Drugs Potentiates Intracellular Synergy. Microbiology Spectrum, 2021, 9, e0043421.	1.2	6
7	A Drug Repurposing Approach for Antimalarials Interfering with SARS-CoV-2 Spike Protein Receptor Binding Domain (RBD) and Human Angiotensin-Converting Enzyme 2 (ACE2). Pharmaceuticals, 2021, 14, 954.	1.7	16
8	Assessment of the Activity of Decoquinate and Its Quinoline-O-Carbamate Derivatives against Toxoplasma gondii In Vitro and in Pregnant Mice Infected with T. gondii Oocysts. Molecules, 2021, 26, 6393.	1.7	6
9	The Artemiside-Artemisox-Artemisone-M1 Tetrad: Efficacies against Blood Stage P. falciparum Parasites, DMPK Properties, and the Case for Artemiside. Pharmaceutics, 2021, 13, 2066.	2.0	4
10	Antimalarial <i>N</i> ¹ , <i>N</i> ³ -Dialkyldioxonaphthoimidazoliums: Synthesis, Biological Activity, and Structure–activity Relationships. ACS Medicinal Chemistry Letters, 2020, 11, 49-55.	1.3	12
11	Anti-Melanoma Activities of Artemisone and Prenylated Amino-Artemisinins in Combination With Known Anticancer Drugs. Frontiers in Pharmacology, 2020, 11, 558894.	1.6	13
12	Accumulation of TB-Active Compounds in Murine Organs Relevant to Infection by Mycobacterium tuberculosis. Frontiers in Pharmacology, 2020, 11, 724.	1.6	6
13	Anti-Mycobacterial Peroxides: A New Class of Agents for Development Against Tuberculosis. Medicinal Chemistry, 2020, 16, 392-402.	0.7	4
14	Artemisone demonstrates synergistic antiviral activity in combination with approved and experimental drugs active against human cytomegalovirus. Antiviral Research, 2019, 172, 104639.	1.9	22
15	<i>In Vitro</i> Efficacies, ADME, and Pharmacokinetic Properties of Phenoxazine Derivatives Active against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	4
16	Development of pyridyl thiosemicarbazones as highly potent agents for the treatment of malaria after oral administration. Journal of Antimicrobial Chemotherapy, 2019, 74, 2965-2973.	1.3	9
17	The evaluation of the antiâ€cancer drug elesclomol that forms a redoxâ€active copper chelate as a potential antiâ€tubercular drug. IUBMB Life, 2019, 71, 532-538.	1.5	21
18	An in vitro ADME and in vivo Pharmacokinetic Study of Novel TB-Active Decoquinate Derivatives. Frontiers in Pharmacology, 2019, 10, 120.	1.6	17

#	Article	IF	CITATIONS
19	Topical Delivery of Artemisone, Clofazimine and Decoquinate Encapsulated in Vesicles and Their In vitro Efficacy Against Mycobacterium tuberculosis. AAPS PharmSciTech, 2019, 20, 33.	1.5	23
20	Optimal 10-Aminoartemisinins With Potent Transmission-Blocking Capabilities for New Artemisinin Combination Therapies–Activities Against Blood Stage P. falciparum Including PfKI3 C580Y Mutants and Liver Stage P. berghei Parasites. Frontiers in Chemistry, 2019, 7, 901.	1.8	16
21	The Evaluation of Metal Co-ordinating Bis-Thiosemicarbazones as Potential Anti-malarial Agents. Medicinal Chemistry, 2019, 15, 51-58.	0.7	6
22	Evaluation and optimization of synthetic routes from dihydroartemisinin to the alkylamino-artemisinins artemiside and artemisone: A test of N-glycosylation methodologies on a lipophilic peroxide. Tetrahedron, 2018, 74, 5156-5171.	1.0	18
23	Synthesis, in vitro antimalarial activities and cytotoxicities of amino-artemisinin-ferrocene derivatives. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 289-292.	1.0	28
24	11-Azaartemisinin cocrystals with preserved lactam : acid heterosynthons. CrystEngComm, 2018, 20, 1205-1219.	1.3	12
25	The Artemisinin Derivative Artemisone Is a Potent Inhibitor of Human Cytomegalovirus Replication. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	39
26	Preliminary Evaluation of Artemisinin–Cholesterol Conjugates as Potential Drugs for the Treatment of Intractable Forms of Malaria and Tuberculosis. ChemMedChem, 2018, 13, 67-77.	1.6	16
27	Accessible and distinct decoquinate derivatives active against Mycobacterium tuberculosis and apicomplexan parasites. Communications Chemistry, $2018,1,.$	2.0	30
28	Cocrystals of the antimalarial drug 11-azaartemisinin with three alkenoic acids of 1:1 or 2:1 stoichiometry. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 742-751.	0.2	13
29	Facile Preparation of N-Glycosylated 10-Piperazinyl Artemisinin Derivatives and Evaluation of Their Antimalarial and Cytotoxic Activities. Molecules, 2018, 23, 1713.	1.7	15
30	Synthesis, antimalarial activities and cytotoxicities of amino-artemisinin-1,2-disubstituted ferrocene hybrids. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3161-3163.	1.0	26
31	Formulation of Natural Oil Nano-Emulsions for the Topical Delivery of Clofazimine, Artemisone and Decoquinate. Pharmaceutical Research, 2018, 35, 186.	1.7	16
32	Artemisone and Artemiside Are Potent Panreactive Antimalarial Agents That Also Synergize Redox Imbalance in Plasmodium falciparum Transmissible Gametocyte Stages. Antimicrobial Agents and Chemotherapy, $2018, 62, .$	1.4	39
33	Absorptive and Secretory Transport of Selected Artemisinin Derivatives Across Caco-2 Cell Monolayers. Current Drug Delivery, 2018, 15, 1183-1192.	0.8	2
34	Elimination of Schistosoma mansoni in infected mice by slow release of artemisone. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 241-247.	1.4	16
35	Activities of 11â€Azaartemisinin and <i>N</i> à€Sulfonyl Derivatives against Asexual and Transmissible Malaria Parasites. ChemMedChem, 2017, 12, 2086-2093.	1.6	17
36	Activities of 11â€Azaartemisinin and <i>N</i> â€Sulfonyl Derivatives against <i>Neospora caninum</i> and Comparative Cytotoxicities. ChemMedChem, 2017, 12, 2094-2098.	1.6	14

#	Article	IF	CITATIONS
37	Mechanochemical conversion of 11-azaartemisinin into pharmaceutical cocrystals with improved solubility. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a268-a268.	0.0	4
38	Methylene Homologues of Artemisone: An Unexpected Structure–Activity Relationship and a Possible Implication for the Design of C10â€Substituted Artemisinins. ChemMedChem, 2016, 11, 1469-1479.	1.6	20
39	In vitro activity of artemisone and artemisinin derivatives against extracellular and intracellular Helicobacter pylori. International Journal of Antimicrobial Agents, 2016, 48, 101-105.	1,1	22
40	In vitro skin permeation of artemisone and its nano-vesicular formulations. International Journal of Pharmaceutics, 2016, 503, 1-7.	2.6	23
41	Straightforward conversion of decoquinate into inexpensive tractable new derivatives with significant antimalarial activities. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3006-3009.	1.0	17
42	Repurposing of antiparasitic drugs: the hydroxy-naphthoquinone buparvaquone inhibits vertical transmission in the pregnant neosporosis mouse model. Veterinary Research, 2016, 47, 32.	1.1	27
43	In vitro effects of new artemisinin derivatives in Neospora caninum-infected human fibroblasts. International Journal of Antimicrobial Agents, 2015, 46, 88-93.	1.1	22
44	In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 2041-2050.	1.7	86
45	The Case for Development of 11 -Aza-artemisinins for Malaria. Current Medicinal Chemistry, 2015 , 22 , 3607 - 3630 .	1.2	15
46	The effect of the Pheroid delivery system on thein vitrometabolism andin vivopharmacokinetics of artemisone. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 313-325.	1.5	5
47	A quantitative reverse-transcriptase PCR assay for the assessment of drug activities against intracellular Theileria annulata schizonts. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 201-209.	1.4	14
48	Assessment of the Induction of Dormant Ring Stages in Plasmodium falciparum Parasites by Artemisone and Artemisone Entrapped in Pheroid Vesicles <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2014, 58, 7579-7582.	1.4	10
49	Recent progress in the development of anti-malarial quinolones. Malaria Journal, 2014, 13, 339.	0.8	63
50	Treatment of Murine Cerebral Malaria by Artemisone in Combination with Conventional Antimalarial Drugs: Antiplasmodial Effects and Immune Responses. Antimicrobial Agents and Chemotherapy, 2014, 58, 4745-4754.	1.4	17
51	Inhibition of metalloproteinase-9 secretion and gene expression by artemisinin derivatives. Acta Tropica, 2014, 140, 77-83.	0.9	10
52	Considerations on the Mechanism of Action of Artemisinin Antimalarials: Part 1 - The & Camp;#39; Carbon Radical& Camp;#39; and & Camp;#39; Heme & Camp;#39; Hypotheses. Infectious Disorders - Drug Targets, 2014, 13, 217-277.	0.4	72
53	Artemisone inhibits in vitro and in vivo propagation of Babesia bovis and B. bigemina parasites. Experimental Parasitology, 2013, 135, 690-694.	0.5	12
54	Anticancer Properties of Distinct Antimalarial Drug Classes. PLoS ONE, 2013, 8, e82962.	1.1	67

#	Article	IF	CITATIONS
55	Expression in Yeast Links Field Polymorphisms in PfATP6 to in Vitro Artemisinin Resistance and Identifies New Inhibitor Classes. Journal of Infectious Diseases, 2013, 208, 468-478.	1.9	25
56	Glucocorticosteroids in Nano-Sterically Stabilized Liposomes Are Efficacious for Elimination of the Acute Symptoms of Experimental Cerebral Malaria. PLoS ONE, 2013, 8, e72722.	1.1	41
57	Synthesis of Artemiside and Its Effects in Combination with Conventional Drugs against Severe Murine Malaria. Antimicrobial Agents and Chemotherapy, 2012, 56, 163-173.	1.4	28
58	Interactions between Artemisinins and other Antimalarial Drugs in Relation to the Cofactor Modelâ€"A Unifying Proposal for Drug Action. ChemMedChem, 2012, 7, 2204-2226.	1.6	63
59	Comparative <i>Ex Vivo</i> Activity of Novel Endoperoxides in Multidrug-Resistant Plasmodium falciparum and P. vivax. Antimicrobial Agents and Chemotherapy, 2012, 56, 5258-5263.	1.4	38
60	Dihydroartemisinin inhibits the human erythroid cell differentiation by altering the cell cycle. Toxicology, 2012, 300, 57-66.	2.0	45
61	Neospora caninum: In vivo and in vitro treatment with artemisone. Veterinary Parasitology, 2012, 187, 99-104.	0.7	31
62	In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemotherapy and Pharmacology, 2011, 67, 569-577.	1.1	46
63	Reactions of Antimalarial Peroxides with Each of Leucomethylene Blue and Dihydroflavins: Flavin Reductase and the Cofactor Model Exemplified. ChemMedChem, 2011, 6, 279-291.	1.6	47
64	A Partial Convergence in Action of Methylene Blue and Artemisinins: Antagonism with Chloroquine, a Reversal with Verapamil, and an Insight into the Antimalarial Activity of Chloroquine. ChemMedChem, 2011, 6, 1603-1615.	1.6	26
65	Absorption of the novel artemisinin derivatives artemisone and artemiside: Potential application of Pheroidâ,,¢ technology. International Journal of Pharmaceutics, 2011, 414, 260-266.	2.6	40
66	Artemisone Uptake in <i>Plasmodium falciparum</i> -Infected Erythrocytes. Antimicrobial Agents and Chemotherapy, 2011, 55, 550-556.	1.4	13
67	Facile Oxidation of Leucomethylene Blue and Dihydroflavins by Artemisinins: Relationship with Flavoenzyme Function and Antimalarial Mechanism of Action. ChemMedChem, 2010, 5, 1282-1299.	1.6	76
68	Artemisone effective against murine cerebral malaria. Malaria Journal, 2010, 9, 227.	0.8	62
69	Evaluation of Artemisone Combinations in <i>Aotus</i> Monkeys Infected with <i>Plasmodium falciparum</i> Antimicrobial Agents and Chemotherapy, 2009, 53, 3592-3594.	1.4	24
70	Artemisone and Artemiside Control Acute and Reactivated Toxoplasmosis in a Murine Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 4450-4456.	1.4	74
71	Interaction of Artemisinins with Oxyhemoglobin Hb–Fe ^{II} , Hb–Fe ^{II} , CarboxyHb–Fe ^{II} ; Heme–Fe ^{II} , and Carboxyheme Fe ^{II} : Significance for Mode of Action and Implications for Therapy of Cerebral Malaria. ChemMedChem, 2009, 4, 2045-2053.	1.6	29
72	Artemisinins: their growing importance in medicine. Trends in Pharmacological Sciences, 2008, 29, 520-527.	4.0	301

#	Article	IF	Citations
73	First Assessment in Humans of the Safety, Tolerability, Pharmacokinetics, and Ex Vivo Pharmacodynamic Antimalarial Activity of the New Artemisinin Derivative Artemisone. Antimicrobial Agents and Chemotherapy, 2008, 52, 3085-3091.	1.4	90
74	Artemisinins Inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense In Vitro Growth. Antimicrobial Agents and Chemotherapy, 2007, 51, 1852-1854.	1.4	116
75	Antimalarial efficacy and drug interactions of the novel semi-synthetic endoperoxide artemisone in vitro and in vivo. Journal of Antimicrobial Chemotherapy, 2007, 59, 658-665.	1.3	83
76	Artesunate and Dihydroartemisinin (DHA): Unusual Decomposition Products Formed under Mild Conditions and Comments on the Fitness of DHA as an Antimalarial Drug. ChemMedChem, 2007, 2, 1448-1463.	1.6	86
77	Preparation of <i>N</i> â€Sulfonyl†and <i>N</i> â€Carbonylâ€11â€Azaartemisinins with Greatly Enhanced Thermal Stabilities: inâ€vitro Antimalarial Activities. ChemMedChem, 2007, 2, 1464-1479.	1.6	34
78	The Fe ²⁺ â€Mediated Decomposition, PfATP6 Binding, and Antimalarial Activities of Artemisone and Other Artemisinins: The Unlikelihood of Câ€Centered Radicals as Bioactive Intermediates. ChemMedChem, 2007, 2, 1480-1497.	1.6	107
79	Differential effects on angiogenesis of two antimalarial compounds, dihydroartemisinin and artemisone: Implications for embryotoxicity. Toxicology, 2007, 241, 66-74.	2.0	68
80	Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends in Molecular Medicine, 2006, 12, 200-205.	3 . 5	82
81	Artemisoneâ€"A Highly Active Antimalarial Drug of the Artemisinin Class. Angewandte Chemie - International Edition, 2006, 45, 2082-2088.	7.2	222
82	Cover Picture: Artemisone—A Highly Active Antimalarial Drug of the Artemisinin Class (Angew. Chem.) Tj ETQq	0 0 0 rgBT 7.2	Oyerlock 10
83	From Artemisinin to New Artemisinin Antimalarials: Biosynthesis, Extraction, Old and New Derivatives, Stereochemistry and Medicinal Chemistry Requirements. Current Topics in Medicinal Chemistry, 2006, 6, 509-537.	1.0	208
84	A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nature Structural and Molecular Biology, 2005, 12, 628-629.	3.6	232
85	Reply to Comments on ?Highly Antimalaria-Active Artemisinin Derivatives: Biological Activity Does Not Correlate with Chemical Reactivity?. Angewandte Chemie - International Edition, 2005, 44, 2064-2065.	7.2	28
86	Convenient Access Both to Highly Antimalaria-Active 10-Arylaminoartemisinins, and to 10-Alkyl Ethers Including Artemether, Arteether, and Artelinate. ChemBioChem, 2005, 6, 659-667.	1.3	36
87	Highly Enantioselective Phenyl Transfer to Aryl Aldehydes Catalyzed by Easily Accessible Chiral Tertiary Aminonaphthol ChemInform, 2005, 36, no.	0.1	0
88	Reply to Comments on "Highly Antimalaria-Active Artemisinin Derivatives: Biological Activity Does Not Correlate with Chemical Reactivity― ChemInform, 2005, 36, no.	0.1	0
89	Artemisinins. Postgraduate Medical Journal, 2005, 81, 71-78.	0.9	200
90	Highly Enantioselective Phenyl Transfer to Aryl Aldehydes Catalyzed by Easily Accessible Chiral Tertiary Aminonaphthol. Journal of Organic Chemistry, 2005, 70, 1093-1095.	1.7	106

#	Article	IF	Citations
91	Highly Antimalaria-Active Artemisinin Derivatives: Biological Activity Does Not Correlate with Chemical Reactivity. Angewandte Chemie - International Edition, 2004, 43, 1381-1385.	7.2	137
92	Elucidation of the Solution Conformations of Loloatin C by NMR Spectroscopy and Molecular Simulation. European Journal of Organic Chemistry, 2004, 2004, 31-37.	1.2	4
93	Synthesis of Cyclic Hexapeptides Based on the Antibiotic Cyclic Decapeptide Loloatin C by an in situ Indirect Cyclization Method. European Journal of Organic Chemistry, 2004, 2004, 38-47.	1.2	7
94	Air-Stable P-Stereogenic Secondary Phosphine Oxides as Chiral Monodentate Ligands for Asymmetric Catalytic Carbon—Carbon Bond Formation ChemInform, 2004, 35, no.	0.1	0
95	Artemisinins: activities and actions. Microbes and Infection, 2004, 6, 1339-1346.	1.0	95
96	Chiral Bisphosphinite Metalloligands Derived from a P-Chiral Secondary Phosphine Oxide. Inorganic Chemistry, 2004, 43, 4921-4926.	1.9	36
97	Artemisinins: mechanisms of action and potential for resistance. Drug Resistance Updates, 2004, 7, 233-244.	6.5	180
98	Air-stable P-stereogenic secondary phosphine oxides as chiral monodentate ligands for asymmetric catalytic carbonî—,carbon bond formation. Tetrahedron: Asymmetry, 2003, 14, 2821-2826.	1.8	46
99	Stereoselective Preparation of $10\hat{l}_{\pm}$ - and $10\hat{l}^{2}$ -Aryl Derivatives of Dihydroartemisinin. European Journal of Organic Chemistry, 2003, 2003, 2098-2114.	1.2	39
100	Artemisinin Antimalarials Do Not Inhibit Hemozoin Formation. Antimicrobial Agents and Chemotherapy, 2003, 47, 1175-1175.	1.4	67
101	Artemisinin and Heme. Antimicrobial Agents and Chemotherapy, 2003, 47, 2712-2713.	1.4	17
102	Neurotoxic Mode of Action of Artemisinin. Antimicrobial Agents and Chemotherapy, 2002, 46, 821-827.	1.4	111
103	Solid-Phase Syntheses of Loloatins Aâ^'C. European Journal of Organic Chemistry, 2002, 2002, 2350.	1.2	13
104	C-10 Ester and Ether Derivatives of Dihydroartemisinin â ⁻ 10-α Artesunate, Preparation of Authentic 10-Î ² Artesunate, and of Other Ester and Ether Derivatives Bearing Potential Aromatic Intercalating Groups at C-10. European Journal of Organic Chemistry, 2002, 2002, 113-132.	1.2	74
105	Artemisinin and derivatives: the future for malaria treatment?. Current Opinion in Infectious Diseases, 2001, 14, 719-726.	1.3	117
106	Reactions of (RP)- and (SP)-tert-butylphenylphosphinobromidates and tert-butylphenylthionophosphinochloridates with heteroatom nucleophiles; preparation of P-chiral binol phosphinates and related compounds. Tetrahedron Letters, 2001, 42, 453-456.	0.7	46
107	Completely stereoselective Pî—,C bond formation via base-induced [1,3]- and [1,2]-intramolecular rearrangements of aryl phosphinates, phosphinoamidates and related compounds: generation of P-chiral \hat{l}^2 -hydroxy, \hat{l}^2 -mercapto- and \hat{l}_2 -amino tertiary phosphine oxides and phosphine sulfides. Tetrahedron Letters. 2001. 42. 457-460.	0.7	26
108	Possible modes of action of the artemisinin-type compounds. Trends in Parasitology, 2001, 17, 122-126.	1.5	207

#	Article	IF	CITATIONS
109	Radical mechanism of action of the artemisinin-type compounds. Trends in Parasitology, 2001, 17, 267-268.	1.5	7
110	Radical mechanism of action of the artemisinin-type compounds. Trends in Parasitology, 2001, 17, 266-267.	1.5	36
111	Reaction of Metallated tert-Butyl(phenyl)phosphane Oxide with Electrophiles as a Route to Functionalized Tertiary Phosphane Oxides: Alkylation Reactions. European Journal of Organic Chemistry, 2000, 2000, 3205-3216.	1.2	75
112	Establishment of anIn Vitro screening model for neurodegeneration induced by antimalarial drugs of the artemisinin-type. Neurotoxicity Research, 2000, 2, 37-49.	1.3	25
113	Ring opening of artemisinin (qinghaosu) and dihydroartemisinin and interception of the open hydroperoxides with Formation of N-oxides — a chemical model for antimalarial mode of action. Tetrahedron Letters, 1999, 40, 4715-4718.	0.7	71
114	Trimethylsilyl triflate catalysed Diels-Alder reaction of TMS ethers of conjugated dienols with cyclic enones: Evidence for an endo transition state, and first application to synthesis of enantiopure octalins. Tetrahedron, 1999, 55, 89-118.	1.0	14
115	An improved preparation of the desmethyl qinghao acid precursor of $(\hat{A}\pm)$ -6,9-desmethylqinghaosu. Tetrahedron, 1999, 55, 10087-10100.	1.0	4
116	Simultaneous determination of artemether and its major metabolite dihydroartemisinin in plasma by gas chromatography–mass spectrometry-selected ion monitoring. Biomedical Applications, 1999, 731, 251-260.	1.7	39
117	A novel endoperoxide and related sesquiterpenes from Artemisia annua which are possibly derived from allylic hydroperoxides. Tetrahedron, 1998, 54, 4345-4356.	1.0	65
118	Highly Diastereoselective Conjugate Addition of Lithiated γ-Crotonolactone (But-2-en-4-olide) to Cyclic Enones To Give Syn-Adducts:  Application to a Brefeldin Synthesis. Journal of Organic Chemistry, 1997, 62, 4552-4553.	1.7	30
119	From Qinghao, Marvelous Herb of Antiquity, to the Antimalarial Trioxane Qinghaosuand Some Remarkable New Chemistry. Accounts of Chemical Research, 1997, 30, 73-79.	7.6	209
120	The formation of a peracetal and trioxane from an enol ether with copper(II) triflate and oxygen: Unexpected oxygenation of aldol intermediates. Tetrahedron Letters, 1997, 38, 2363-2366.	0.7	7
121	The First Examples of Enantiomerically Pure Diphosphane Dioxidesâ€"(RP,RP)- and (SP,SP)-1,2-Di-ter-butyl-1,2-diphenyldiphosphane 1,2-Dioxides, and (RP)- and (SP)-1-tert-Butyl-1,2,2-triphenyldiphosphane 1,2-Dioxides. Chemistry - A European Journal, 1997, 3, 2052-2057.	1.7	21
122	The behaviour of qinghaosu (artemisinin) in the presence of heme iron(II) and (III). Tetrahedron Letters, 1996, 37, 253-256.	0.7	85
123	The behaviour of qinghaosu (artemisinin) in the presence of non-heme iron(II) and (III). Tetrahedron Letters, 1996, 37, 257-260.	0.7	76
124	Stereoselective preparation of functionalized tertiary P-chiral phosphine oxides by nucleophilic addition of lithiated tert-butylphenylphosphine oxide to carbonyl compounds. Tetrahedron Letters, 1996, 37, 4729-4732.	0.7	49
125	Preparation of bi- and tridentate doubly P-chiral diphosphine dioxide ligands for asymmetric catalysis. Tetrahedron Letters, 1996, 37, 4733-4736.	0.7	26
126	A1H and 13C NMR Study of the Structure of Sulfur-Stabilized Lithiated Allylic Carbanions. Bulletin of the Chemical Society of Japan, 1995, 68, 2739-2749.	2.0	12

#	Article	IF	CITATIONS
127	The preparation of D-ring-contracted analogues of Qinghaosu (Artemisinin) from Qinghao (Artemisinic) acid and their In vitro activity against Plasmodium falciparum. Tetrahedron Letters, 1995, 36, 4641-4642.	0.7	18
128	An Efficient Stereoselective Synthesis of a Racemic CD-Intermediate of Vitamin D. Journal of Organic Chemistry, 1995, 60, 807-812.	1.7	6
129	Copper(II) Trifluoromethanesulfonate-Induced Cleavage Oxygenation of Allylic Hydroperoxides Derived from Qinghao Acid in the Synthesis of Qinghaosu Derivatives: Evidence for the Intermediacy of Enols. Journal of the American Chemical Society, 1995, 117, 11098-11105.	6.6	45
130	Diastereo- and Regioselectivity in the Reactions of Dilithiated Allylic Secondary Amides with Cyclopent-2-enone. Journal of Organic Chemistry, 1995, 60, 4690-4691.	1.7	10
131	Ionic â€^Diels–Alder' reactions of hexa-3,5-dienyl trimethylsilyl ether and enones: X-ray structural determination of adduct stereostructure, and a stereoselective approach to trans-fused octalin systems. Journal of the Chemical Society Chemical Communications, 1995, , 2479-2480.	2.0	7
132	Extraction of artemisinin and artemisinic acid: preparation of artemether and new analogues. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1994, 88, 23-26.	0.7	38
133	Preparation of a Bicyclic Analog of Qinghao (Artemisinic) Acid via a Lewis Acid Catalyzed Ionic Diels-Alder Reaction Involving a Hydroxy Diene and Cyclic Enone and Facile Conversion into (.+)-6,9-Desdimethylqinghaosu. Journal of Organic Chemistry, 1994, 59, 4743-4748.	1.7	29
134	Preparation of Enantiomerically Pure Tertiary Phosphine Oxides from, and Assay of Enantiomeric Purity with, (Rp)- and (Sp)-tert-Butylphenylphosphinothioic Acids. Journal of Organic Chemistry, 1994, 59, 2919-2921.	1.7	55
135	An Improved Method for the Isolation of Qinghao (Artemisinic) Acid fromArtemisia annua. Planta Medica, 1993, 59, 562-563.	0.7	31
136	Synthetic utilization of highly stereoselective conjugate addition reactions of phosphorus and sulfur stabilized allylic carbanions. Pure and Applied Chemistry, 1993, 65, 647-654.	0.9	18
137	Efficient Preparation of Novel Qinghaosu (Artemisinin) Derivatives: Conversion of Qinghao (Artemisinic) Acid into Deoxoqinghaosu Derivatives and 5-Carba-4-deoxoartesunic Acid1. Synlett, 1992, 1992, 481-483.	1.0	32
138	The preparation of (R)- and (S)-(E)-but-2-enyl-t-butylphenylphosphine oxides and their enantiospecific conversion into enantiomeric hydrindenones related to vitamin D. Journal of the Chemical Society Chemical Communications, 1991, , 58.	2.0	17
139	Novel formation of isomeric bicyclo[3.2.0]heptan-1-ols from phenyl vinyl sulfoxide and the cyclopentanone lithium enolate generated by conjugate addition of lithiated (E)-but-2-enyldiphenylphosphine oxide to 2-methylcyclopent-2-enone. Journal of Organic Chemistry,	1.7	39
140	A new resolution procedure for the preparation of both (R)-(+)- and (S)-(-)-4-tert-butoxycyclopent-2-enone from racemic 4-tert-butoxycyclopent-2-enone and conversion of (R)-(+)-4-tert-butoxycyclopent-2-enone into (R)-(+)-4-acetoxycyclopent-2-enone. A new method for the determination of the enantiomeric purities of the resolved enones. Journal of Organic Chemistry,	1.7	27
141	1991, 56, 4760-4766. Efficient Trapping of Ketone Enolates With Acrylate and β-Sulfonylacrylate Thioesters, β-Sulfonyl-, β-Sulfinyl- and β-Chloro-Vinyl Ketones; Facile Preparation of a Hydrindanone, cis-Dimethyloctalone, and Unsaturated 1,5-Dicarbonyl Compounds. Australian Journal of Chemistry, 1990, 43, 1375.	0.5	10
142	Iron(III)-induced cleavage of cyclic allylic hydroperoxides to dicarbonyl compounds under aprotic conditions. Journal of the Chemical Society Chemical Communications, 1990, , 449.	2.0	14
143	Tritylation, methoxymethylation, and silylation of allylic hydroperoxides via stannyl peroxide intermediates. Allylic rearrangement of a stannyl peroxide. Journal of the Chemical Society Chemical Communications, 1990, , 448.	2.0	9
144	Catalysed oxygenation of allylic hydroperoxides derived from qinghao (artemisinic) acid. Conversion of qinghao acid into dehydroginghaosu (artemisitene) and qinghaosu (artemisinin). Journal of the Chemical Society Chemical Communications, 1990, , 451.	2.0	54

#	Article	IF	CITATIONS
145	Iron(III) and copper(II) catalysed transformations of fatty acid hydroperoxides: efficient generation of peroxy radicals with copper(II) trifluoromethanesulphonate. Journal of the Chemical Society Chemical Communications, 1990, , 1102.	2.0	30
146	Stereoselective, Base-Induced Formation of Bicyclo[2.2.1]heptanones and Bicyclo[3.2.1]octanols From the Products of Conjugate Addition of Lithiated Allylic Sulfoxides and Phosphine Oxides to Cyclopent-2-enone. Australian Journal of Chemistry, 1989, 42, 1473.	0.5	9
147	Stereoselection in the Aprotic Conjugate Addition Reactions of Lithiated 1-Isobutylbut-2-enyl Sulfoxide, Sulfone and Phosphine Oxide With Cyclopent-2-enone and Methylcyclopent-2-enone. Australian Journal of Chemistry, 1989, 42, 1671.	0.5	2
148	Use of .betasulfonyl vinyl ketones as equivalents to vinyl ketones in the Robinson annelation. Convergent, highly stereoselective preparation of a hydrindanol related to vitamin D from 2-methylcyclopent-2-enone and lithiated (E)-but-2-enyldiphenylphosphine oxide. Journal of Organic Chemistry, 1989, 54, 5162-5170.	1.7	52
149	Kinetically controlled, stereoselective formation of vinylic sulfones by conjugate addition of lithiated 3-alkylallylic sulfones to cyclic enones. Journal of Organic Chemistry, 1989, 54, 1960-1968.	1.7	26
150	Stereoselective Preparation of Bicyclo[3.3.0]octanones From the Products of Aprotic Conjugate Addition of Lithiated Allylic Sulfoxides to Cyclopent-2-enone and Enolate Trapping With Methyl Cyanoformate. Australian Journal of Chemistry, 1989, 42, 1455.	0.5	7
151	Aprotic Conjugate Addition Reactions of Lithiated Allylic Sulfoxides With Acyclic Enones; a Breakdown of the trans-Decalyl Transition State. Australian Journal of Chemistry, 1989, 42, 1785.	0.5	3
152	Low-Temperature X-ray Crystal-Structure Analysis of the Thermally Unstable Lithiated 2-Butenyltert-Butyl Sulfide: A comparison with modelab initio MO calculations. Helvetica Chimica Acta, 1988, 71, 299-311.	1.0	44
153	Preparation of stable, camphor-derived, optically active allyl and alkyl sulfoxides and thermal epimerization of the allyl sulfoxides. Journal of Organic Chemistry, 1988, 53, 2881-2889.	1.7	62
154	Aprotic conjugate addition of allyllithium reagents bearing polar groups to cyclic enones. 2. 2-Alkyl-, 2,3-dialkyl- and 1,3-dialkylallyl systems. Journal of the American Chemical Society, 1988, 110, 5423-5433.	6.6	34
155	A simple route to (R)-(+)-4-t-butoxycyclopent-2-enone. Journal of the Chemical Society Chemical Communications, 1988, , 137.	2.0	10
156	Aprotic conjugate addition of allyllithium reagents bearing polar groups to cyclic enones. 1. 3-Alkylallyl systems. Journal of the American Chemical Society, 1988, 110, 5411-5423.	6.6	51
157	The Preparation of Some \hat{l}^2 -Sulfonylacrylate Thioesters and \hat{l}^2 -Sulfonylvinyl Ketones. Australian Journal of Chemistry, 1988, 41, 881.	0.5	11
158	Oxygenation of 1-t-Butylcyclohexa-1,3-diene and Cholesta-2,4-diene in the Presence of Trityl Tetrafluoroborate. Australian Journal of Chemistry, 1988, 41, 505.	0.5	7
159	The Preparation of 9-Oxo-10-Oxaprostanoids by the Conjugate Addition of (E)-1-(Phenylthio)Oct-2-Enyllithium to γ-Crotonolactone and the Direct Alkylation of the Derived Enolate With Methyl 7-Bromohept-5-ynoate and Related Electrophiles. Australian Journal of Chemistry, 1987, 40, 1249,	0.5	7
160	The Preparation of Methyl 7-lodohept-5-Ynoate and Related Electrophiles. Australian Journal of Chemistry, 1987, 40, 273.	0.5	2
161	The Preparation of Some Octenyl Sulfides From Oct-1-en-3-Ol and Oct-2-en-1-ol. Australian Journal of Chemistry, 1987, 40, 281.	0.5	4
162	Stereochemical and Mechanistic Aspects of the Aprotic Conjugate Addition Reactions of the Carbanions of Octenyl Sulfides and Octenyl Thiocarbamates With 4-Tert-Butoxycyclopent-2-Enone in the Presence of Hexamethylphosphoric Triamide. Australian Journal of Chemistry, 1987, 40, 937.	0.5	7

#	Article	IF	CITATIONS
163	Preparation of bicyclic compounds from the products of conjugate addition of allylic sulphoxide and phosphine oxide carbanions to cyclopent-2-enones. Journal of the Chemical Society Chemical Communications, 1987, , 340.	2.0	10
164	An Extremely Simple Route to a Prostaglandin Precursor: Hexamethylphosphoric-Triamide-Mediated Conjugate Addition of 1-(Phenylthio)Oct-2-Enyllithium to 4-Tert-Butoxycyclopent-2-Enone and Triphenyltin-Chloride-Assisted Reaction of the Enolate With Methyl 7-Iodohept-5-Ynoate. Australian Journal of Chemistry, 1987, 40, 1211.	0.5	14
165	The Aprotic Conjugate Addition-Reactions of the Carbanions of Octenyl Sulfides and Thiocarbamates With 13-Crotonolactone- Stereochemical and Mechanistic Aspects of Reactions Conducted in the Absence and Presence of Hexamethylphosphoric Triamide. Australian Journal of Chemistry, 1987, 40, 1223.	0.5	7
166	Preparation of hydrindenones from 2-methylcyclopent-2-enone and the carbanion of (E)-but-2-enyldiphenylphosphine oxide: efficient enolate trapping with \hat{l}^2 -sulphonylvinyl ketones. Journal of the Chemical Society Chemical Communications, 1987, , 92-94.	2.0	14
167	The Conversion of Ethyl Dienol Ether and Dienyl Pivalate Derivatives of Hagemanns Ester Into Bicyclic Enones. Australian Journal of Chemistry, 1987, 40, 1331.	0.5	6
168	Photoinduced reactions of $3\hat{1}^2$ -acetoxycholesta-5,7-diene, $3\hat{1}^2$ -acetoxycholest-5-ene, tetraphenylcyclopentadiene and 1,1-diphenylethylene with oxygen in the presence of phenylselenenyl bromide. Tetrahedron Letters, 1986, 27, 509-512.	0.7	6
169	A route to prostaglandin precursors from 1-(phenylthio)-2-octenyllithium Tetrahedron Letters, 1985, 26, 3385-3388.	0.7	15
170	The diastereospecific aprotic conjugate addition reactions of carbanions derived from allylic sulfoxides and allylic phosphine oxides Tetrahedron Letters, 1985, 26, 1565-1568.	0.7	23
171	The diastereospecific aprotic conjugate addition reactions of allylic anions-mechanistic aspects Tetrahedron Letters, 1985, 26, 1569-1572.	0.7	20
172	Preparation of stable, camphor-derived, optically active allylic sulfoxides. Tetrahedron Letters, 1985, 26, 6381-6384.	0.7	20
173	Formation of novel, dimeric epidioxides from the Lewis acid catalyzed oxygenation of 1-tert-butylcyclohexa-1,3-diene. Journal of the American Chemical Society, 1985, 107, 4582-4584.	6.6	8
174	The preparation and reactions of dienol ester and dienol ester derivatives of hagemann's ester and its t-butyl analogue. Tetrahedron Letters, 1984, 25, 1625-1628.	0.7	9
175	The preparation of (Methylthio)- and (Methylseleno)-tri(alkyl or aryl)phosphonium salts and their reactions with carboxylic acids and alcohols. Australian Journal of Chemistry, 1984, 37, 1183.	0.5	18
176	Preparation of t-Butyl 2-(Phenylthiomethyl)propenoate, t-Butyl 3-(Phenylthio)-2-(phenylthiomethyl)propenoate and related compounds. Australian Journal of Chemistry, 1984, 37, 1571.	0.5	10
177	The preparation of ethyl and isopropyl dienol ethers and dienol pivalate esters from Hagemann's ester and its t-butyl analogue, and the reactions of the derived ester dienolates with electrophiles. Australian Journal of Chemistry, 1984, 37, 2037.	0.5	6
178	Formation of iodides and esters from alcohols and tributyldiiodophosphorane and diiodotriphenylphosphorane. Australian Journal of Chemistry, 1982, 35, 517.	0.5	40
179	Hexamethylphosphoramide-mediated conjugate addition of (alkylthio)-, (phenylthio)-, and (phenylseleno)allyllithium reagents to 2-cyclopentenone. Journal of Organic Chemistry, 1981, 46, 3790-3795.	1.7	48
180	Conjugate addition of the anion derived from 3-(Phenylsulfinyl)prop-1-ene to Cyclopent-2-en-1-one. Australian Journal of Chemistry, 1981, 34, 2465.	0.5	10

#	Article	IF	CITATIONS
181	Conversion of enones into dienones via allylpalladium complexes. Australian Journal of Chemistry, 1980, 33, 1537.	0.5	11
182	HMPA-Mediated conjugate addition of alkyl- and phenylthioallyl anions to cyclopentenone. Tetrahedron Letters, 1980, 21, 573-576.	0.7	38
183	Lewis-acid-catalysed reaction of oxygen with 1,3-diphenylisobenzofuran, tetraphenylfuran and tetraphenylcyclopentadiene. Australian Journal of Chemistry, 1980, 33, 2653.	0.5	12
184	Direct formation of 3,3,6,6-Tetraaryl-1,2-dioxans from 1,1-Diarylethylenes and oxygen, catalysed by antimony(V) chloride. Australian Journal of Chemistry, 1978, 31, 1737.	0.5	36
185	Lewis-acid-catalysed oxygenation of 1,1'-bicyclohexenyl and α-terpinene. Reactions in dichloromethane and liquid sulphur dioxide. Australian Journal of Chemistry, 1978, 31, 131.	0.5	29
186	Some further observations on the Lewis-acid-catalysed oxygenation of ergosteryl acetate. Australian Journal of Chemistry, 1978, 31, 121.	0.5	31
187	New reactions of triplet oxygen which avoid the spin barrier. Journal of the Chemical Society Perkin Transactions 1, 1975, , 2055.	0.9	98
188	Über den Nachweis freier Radikale bei der Autoxidation des Orcins. Chemische Berichte, 1974, 107, 3723-3732.	0.2	11
189	Die Oxidation von Orcin mit K3[Fe(CN)6] im Strömungsrohr. Chemische Berichte, 1974, 107, 3733-3748.	0.2	20
190	Lewis acid catalysed oxygenation of ergosteryl acetate by triplet oxygen. Journal of the Chemical Society Chemical Communications, 1974, , 511.	2.0	21
191	Amine oxidation and the chemistry of quinone imines. Part III. 2,4-Di-methoxy-5-t-butylaniline. Journal of the Chemical Society Perkin Transactions 1, 1972, , 813.	0.9	8
192	Amine oxidation and the chemistry of quinone imines. Part II. 2,5-Di-methoxy-4-t-butylaniline. Journal of the Chemical Society Perkin Transactions 1, 1972, , 408.	0.9	5
193	Amine oxidation and the chemistry of quinone imines. Part I. 3-Methoxy-4-t-butylaniline. Journal of the Chemical Society Perkin Transactions 1, 1972, , 396.	0.9	7