Pasqualino de Antonellis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of Detection of sgN Precedes Viral Abridged Replication in COVID-19-Affected Patients—A Target for SARS-CoV-2 Propagation. International Journal of Molecular Sciences, 2022, 23, 1941.	1.8	4
2	Germline rare variants of lectin pathway genes predispose to asymptomatic SARS-CoV-2 infection in elderly individuals. Genetics in Medicine, 2022, , .	1.1	7
3	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	15.2	141
4	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	13.5	79
5	Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nature Communications, 2019, 10, 4343.	5.8	200
6	Hepatocellular carcinoma: H-Prune gene regulatory networks. EBioMedicine, 2019, 41, 21-22.	2.7	2
7	Recurrent noncoding U1ÂsnRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature, 2019, 574, 707-711.	13.7	129
8	Abstract 142: The EGFR signaling modulates in mesenchymal stem cells the expression of microRNAs involved in the interaction with breast cancer cells. , 2019, , .		0
9	Abstract 142: The EGFR signaling modulates in mesenchymal stem cells the expression of microRNAs involved in the interaction with breast cancer cells. , 2019, , .		0
10	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	13.5	85
11	Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1–TGF-β–OTX2–SNAIL via PTEN inhibition. Brain, 2018, 141, 1300-1319.	3.7	22
12	RIP1–HAT1–SIRT Complex Identification and Targeting in Treatment and Prevention of Cancer. Clinical Cancer Research, 2018, 24, 2886-2900.	3.2	40
13	Gene methylation in liquid biopsy and risk of recurrence in lung cancer. Journal of Thoracic Disease, 2018, 10, 1286-1289.	0.6	2
14	DRES-09. IN VIVO FUNCTIONAL GENOMICS IDENTIFIES DRIVERS OF CHEMORESISTANCE IN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, vi77-vi77.	0.6	0
15	MBRS-52. TARGETING PRUNE-1 IN A GEMM OF METASTATIC MEDULLOBLASTOMA: A POTENTIAL ROUTE OF INHIBITION FOR NEW FUTURE THERAPIES. Neuro-Oncology, 2018, 20, i139-i139.	0.6	0
16	In vivo bioluminescence imaging using orthotopic xenografts towards patient's derived-xenograft Medulloblastoma models. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 95-101.	0.4	5
17	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	7.7	191
18	<scp>M</scp> i <scp>R</scp> â€34a deficiency accelerates medulloblastoma formation <i>in vivo</i> . International Journal of Cancer, 2015, 136, 2293-2303.	2.3	40

Pasqualino de Antonellis

#	Article	IF	CITATIONS
19	A therapeutic approach to treat prostate cancer by targeting Nm23-H1/h-Prune interaction. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 257-269.	1.4	20
20	Early Targets of miR-34a in Neuroblastoma. Molecular and Cellular Proteomics, 2014, 13, 2114-2131.	2.5	29
21	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	0.8	263
22	Afatinib, a lung cancer inhibitor of ErbB family. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 503-504.	1.4	3
23	H-Prune through GSK-3β interaction sustains canonical WNT/β-catenin signaling enhancing cancer progression in NSCLC. Oncotarget, 2014, 5, 5736-5749.	0.8	42
24	MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 287-302.	1.4	30
25	Mapping Functional Interaction Sites of Human Prune Câ€₹erminal Domain by NMR Spectroscopy in Human Cell Lysates. Chemistry - A European Journal, 2013, 19, 12217-12220.	1.7	12
26	Neuroblastoma tumorigenesis is regulated through the Nm23-H1/h-Prune C-terminal interaction. Scientific Reports, 2013, 3, 1351.	1.6	34
27	The micro-RNA 199b-5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma. Neuro-Oncology, 2012, 14, 596-612.	0.6	48
28	The metallophosphodiesterase Mpped2 impairs tumorigenesis in neuroblastoma. Cell Cycle, 2012, 11, 569-581.	1.3	30
29	Novel pyrimidopyrimidine derivatives for inhibition of cellular proliferation and motility induced by h-prune in breast cancer. European Journal of Medicinal Chemistry, 2012, 57, 41-50.	2.6	22
30	Molecular networks that regulate cancer metastasis. Seminars in Cancer Biology, 2012, 22, 234-249.	4.3	296
31	Norcantharidin impairs medulloblastoma growth by inhibition of Wnt/β-catenin signaling. Journal of Neuro-Oncology, 2012, 106, 59-70.	1.4	36
32	Detection of erbB2 copy number variations in plasma of patients with esophageal carcinoma. BMC Cancer, 2011, 11, 126.	1.1	22
33	MiR-34a Targeting of Notch Ligand Delta-Like 1 Impairs CD15+/CD133+ Tumor-Propagating Cells and Supports Neural Differentiation in Medulloblastoma. PLoS ONE, 2011, 6, e24584.	1.1	149
34	The miR-17-92 MicroRNA Cluster Regulates Multiple Components of the TGF-β Pathway in Neuroblastoma. Molecular Cell, 2010, 40, 762-773.	4.5	279