Pasqualino de Antonellis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701932/publications.pdf

Version: 2024-02-01

34 papers

2,311 citations

331670 21 h-index 32 g-index

36 all docs 36 docs citations

36 times ranked 4816 citing authors

#	Article	IF	Citations
1	Molecular networks that regulate cancer metastasis. Seminars in Cancer Biology, 2012, 22, 234-249.	9.6	296
2	The miR-17-92 MicroRNA Cluster Regulates Multiple Components of the TGF-Î ² Pathway in Neuroblastoma. Molecular Cell, 2010, 40, 762-773.	9.7	279
3	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
4	Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nature Communications, 2019, 10, 4343.	12.8	200
5	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	16.8	191
6	MiR-34a Targeting of Notch Ligand Delta-Like 1 Impairs CD15+/CD133+ Tumor-Propagating Cells and Supports Neural Differentiation in Medulloblastoma. PLoS ONE, 2011, 6, e24584.	2.5	149
7	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	30.7	141
8	Recurrent noncoding U1ÂsnRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature, 2019, 574, 707-711.	27.8	129
9	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	28.9	85
10	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	28.9	79
11	The micro-RNA 199b-5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma. Neuro-Oncology, 2012, 14, 596-612.	1.2	48
12	H-Prune through GSK- $3\hat{1}^2$ interaction sustains canonical WNT/ $\hat{1}^2$ -catenin signaling enhancing cancer progression in NSCLC. Oncotarget, 2014, 5, 5736-5749.	1.8	42
13	<scp>M</scp> i <scp>R</scp> â€34a deficiency accelerates medulloblastoma formation <i>in vivo</i> in vivoin ternational Journal of Cancer, 2015, 136, 2293-2303.	5.1	40
14	RIP1–HAT1–SIRT Complex Identification and Targeting in Treatment and Prevention of Cancer. Clinical Cancer Research, 2018, 24, 2886-2900.	7.0	40
15	Norcantharidin impairs medulloblastoma growth by inhibition of Wnt/ \hat{l}^2 -catenin signaling. Journal of Neuro-Oncology, 2012, 106, 59-70.	2.9	36
16	Neuroblastoma tumorigenesis is regulated through the Nm23-H1/h-Prune C-terminal interaction. Scientific Reports, 2013, 3, 1351.	3.3	34
17	The metallophosphodiesterase Mpped2 impairs tumorigenesis in neuroblastoma. Cell Cycle, 2012, 11, 569-581.	2.6	30
18	MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 287-302.	3.0	30

#	Article	IF	CITATIONS
19	Early Targets of miR-34a in Neuroblastoma. Molecular and Cellular Proteomics, 2014, 13, 2114-2131.	3.8	29
20	Detection of erbB2 copy number variations in plasma of patients with esophageal carcinoma. BMC Cancer, 2011, 11, 126.	2.6	22
21	Novel pyrimidopyrimidine derivatives for inhibition of cellular proliferation and motility induced by h-prune in breast cancer. European Journal of Medicinal Chemistry, 2012, 57, 41-50.	5.5	22
22	Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1â€"TGF-βâ€"OTX2â€"SNAIL via PTEN inhibition. Brain, 2018, 141, 1300-1319.	7.6	22
23	A therapeutic approach to treat prostate cancer by targeting Nm23-H1/h-Prune interaction. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 257-269.	3.0	20
24	Mapping Functional Interaction Sites of Human Prune Câ€Terminal Domain by NMR Spectroscopy in Human Cell Lysates. Chemistry - A European Journal, 2013, 19, 12217-12220.	3.3	12
25	Germline rare variants of lectin pathway genes predispose to asymptomatic SARS-CoV-2 infection in elderly individuals. Genetics in Medicine, 2022, , .	2.4	7
26	In vivo bioluminescence imaging using orthotopic xenografts towards patient's derived-xenograft Medulloblastoma models. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 95-101.	0.7	5
27	Loss of Detection of sgN Precedes Viral Abridged Replication in COVID-19-Affected Patients—A Target for SARS-CoV-2 Propagation. International Journal of Molecular Sciences, 2022, 23, 1941.	4.1	4
28	Afatinib, a lung cancer inhibitor of ErbB family. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 503-504.	3.0	3
29	Gene methylation in liquid biopsy and risk of recurrence in lung cancer. Journal of Thoracic Disease, 2018, 10, 1286-1289.	1.4	2
30	Hepatocellular carcinoma: H-Prune gene regulatory networks. EBioMedicine, 2019, 41, 21-22.	6.1	2
31	DRES-09. IN VIVO FUNCTIONAL GENOMICS IDENTIFIES DRIVERS OF CHEMORESISTANCE IN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, vi77-vi77.	1.2	0
32	MBRS-52. TARGETING PRUNE-1 IN A GEMM OF METASTATIC MEDULLOBLASTOMA: A POTENTIAL ROUTE OF INHIBITION FOR NEW FUTURE THERAPIES. Neuro-Oncology, 2018, 20, i139-i139.	1.2	0
33	Abstract 142: The EGFR signaling modulates in mesenchymal stem cells the expression of microRNAs involved in the interaction with breast cancer cells. , 2019 , , .		0
34	Abstract 142: The EGFR signaling modulates in mesenchymal stem cells the expression of microRNAs involved in the interaction with breast cancer cells., $2019, \dots$		0