
Simone Sabbioneda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA repair XPV Polymerase and the Bypass of Ultraviolet DNA Damage. , 2021, , 345-351.		Ο
2	A Role for Human DNA Polymerase λ in Alternative Lengthening of Telomeres. International Journal of Molecular Sciences, 2021, 22, 2365.	4.1	3
3	DROSHA is recruited to DNA damage sites by the MRN complex to promote non-homologous end joining. Journal of Cell Science, 2021, 134, .	2.0	9
4	Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions. Nucleic Acids Research, 2021, 49, 12769-12784.	14.5	28
5	Novel alternative ribonucleotide excision repair pathways in human cells by DDX3X and specialized DNA polymerases. Nucleic Acids Research, 2020, 48, 11551-11565.	14.5	9
6	From R-Loops to G-Quadruplexes: Emerging New Threats for the Replication Fork. International Journal of Molecular Sciences, 2020, 21, 1506.	4.1	25
7	Chk1 loss creates replication barriers that compromise cell survival independently of excess origin firing. EMBO Journal, 2019, 38, e101284.	7.8	17
8	Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	32
9	UBR5 interacts with the replication fork and protects DNA replication from DNA polymerase η toxicity. Nucleic Acids Research, 2019, 47, 11268-11283.	14.5	16
10	Gene Expression Profiles Controlled by the Alternative Splicing Factor Nova2 in Endothelial Cells. Cells, 2019, 8, 1498.	4.1	10
11	4-PBA ameliorates cellular homeostasis in fibroblasts from osteogenesis imperfecta patients by enhancing autophagy and stimulating protein secretion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1642-1652.	3.8	55
12	Ribonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity. Nucleic Acids Research, 2017, 45, gkw1275.	14.5	31
13	Phosphorylation regulates human poll̂· stability and damage bypass throughout the cell cycle. Nucleic Acids Research, 2017, 45, 9441-9454.	14.5	18
14	The Regulation of DNA Damage Tolerance by Ubiquitin and Ubiquitin-Like Modifiers. Frontiers in Genetics, 2016, 7, 105.	2.3	30
15	RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene, 2016, 35, 4009-4019.	5.9	37
16	TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nature Genetics, 2016, 48, 36-43.	21.4	74
17	USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene, 2016, 35, 965-976.	5.9	65
18	Replication of Structured DNA and its implication in epigenetic stability. Frontiers in Genetics, 2015, 6, 209.	2.3	19

SIMONE SABBIONEDA

#	Article	IF	CITATIONS
19	ATR-mediated phosphorylation of DNA polymerase η is needed for efficient recovery from UV damage. Journal of Cell Biology, 2011, 192, 219-227.	5.2	73
20	Influence of the live cell DNA marker DRAQ5 on chromatin-associated processes. DNA Repair, 2010, 9, 848-855.	2.8	17
21	Regulation of Translesion Synthesis DNA Polymerase η by Monoubiquitination. Molecular Cell, 2010, 37, 396-407.	9.7	148
22	Ubiquitin-binding motif of human DNA polymerase η is required for correct localization: Fig. 1 Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E20-E20.	7.1	25
23	Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proceedings of the United States of America, 2008, 105, 16125-16130.	7.1	155
24	Effect of Proliferating Cell Nuclear Antigen Ubiquitination and Chromatin Structure on the Dynamic Properties of the Y-family DNA Polymerases. Molecular Biology of the Cell, 2008, 19, 5193-5202.	2.1	70
25	Yeast Rev1 is cell cycle regulated, phosphorylated in response to DNA damage and its binding to chromosomes is dependent upon MEC1. DNA Repair, 2007, 6, 121-127.	2.8	53
26	Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair, 2007, 6, 891-899.	2.8	335
27	The 9-1-1 Checkpoint Clamp Physically Interacts with Polζ and Is Partially Required for Spontaneous Polζ-dependent Mutagenesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 38657-38665.	3.4	104
28	Sometimes size does matter. European Journal of Cancer, 2003, 39, 1337-1338.	2.8	0
29	Correlation between Checkpoint Activation and in Vivo Assembly of the Yeast Checkpoint Complex Rad17-Mec3-Ddc1. Journal of Biological Chemistry, 2003, 278, 22303-22308.	3.4	5