
Filippo Del Bene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701605/publications.pdf Version: 2024-02-01

FILIDDO DEL RENE

#	Article	IF	CITATIONS
1	Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy. Science, 2004, 305, 1007-1009.	6.0	2,103
2	Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research, 2014, 24, 142-153.	2.4	552
3	Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature, 2009, 461, 407-410.	13.7	387
4	Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor. Neuron, 2007, 54, 535-545.	3.8	310
5	Regulation of Neurogenesis by Interkinetic Nuclear Migration through an Apical-Basal Notch Gradient. Cell, 2008, 134, 1055-1065.	13.5	288
6	Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish. Neuron, 2016, 89, 613-628.	3.8	271
7	Optical control of zebrafish behavior with halorhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17968-17973.	3.3	242
8	Live Tracking of Inter-organ Communication by Endogenous Exosomes InÂVivo. Developmental Cell, 2019, 48, 573-589.e4.	3.1	231
9	Direct interaction of geminin and Six3 in eye development. Nature, 2004, 427, 745-749.	13.7	225
10	Filtering of Visual Information in the Tectum by an Identified Neural Circuit. Science, 2010, 330, 669-673.	6.0	223
11	Differentiation of the Vertebrate Retina Is Coordinated by an FGF Signaling Center. Developmental Cell, 2005, 8, 565-574.	3.1	165
12	Emergence of Patterned Activity in the Developing Zebrafish Spinal Cord. Current Biology, 2012, 22, 93-102.	1.8	163
13	CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nature Communications, 2016, 7, 10866.	5.8	162
14	Optogenetic Localization and Genetic Perturbation of Saccade-Generating Neurons in Zebrafish. Journal of Neuroscience, 2010, 30, 7111-7120.	1.7	159
15	CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods, 2014, 69, 142-150.	1.9	149
16	A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 647-658.	1.7	126
17	Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods, 2017, 121-122, 77-85.	1.9	115
18	Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates. Frontiers in Neuroanatomy, 2014, 8, 26.	0.9	101

FILIPPO DEL BENE

#	Article	IF	CITATIONS
19	State-Dependent Modulation of Locomotion by GABAergic Spinal Sensory Neurons. Current Biology, 2015, 25, 3035-3047.	1.8	86
20	Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Developmental Biology, 2016, 414, 133-141.	0.9	77
21	Optogenetics: A new enlightenment age for zebrafish neurobiology. Developmental Neurobiology, 2012, 72, 404-414.	1.5	75
22	Cell cycle control by homeobox genes in development and disease. Seminars in Cell and Developmental Biology, 2005, 16, 449-460.	2.3	62
23	CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nature Protocols, 2014, 9, 2823-2840.	5.5	62
24	Transparent Danionella translucida as a genetically tractable vertebrate brain model. Nature Methods, 2018, 15, 977-983.	9.0	62
25	2C-Cas9: a versatile tool for clonal analysis of gene function. Genome Research, 2016, 26, 681-692.	2.4	57
26	The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Scientific Reports, 2017, 7, 719.	1.6	52
27	A light-gated potassium channel for sustained neuronal inhibition. Nature Methods, 2018, 15, 969-976.	9.0	47
28	In Vivo Validation of a Computationally Predicted Conserved Ath5 Target Gene Set. PLoS Genetics, 2007, 3, e159.	1.5	45
29	Mutations affecting liver development and function in Medaka, Oryzias latipes, screened by multiple criteria. Mechanisms of Development, 2004, 121, 791-802.	1.7	35
30	Let there be light: zebrafish neurobiology and the optogenetic revolution. Reviews in the Neurosciences, 2011, 22, 121-130.	1.4	35
31	Redox Signaling via Lipid Peroxidation Regulates Retinal Progenitor Cell Differentiation. Developmental Cell, 2019, 50, 73-89.e6.	3.1	35
32	An interhemispheric neural circuit allowing binocular integration in the optic tectum. Nature Communications, 2019, 10, 5471.	5.8	35
33	An Attractive Reelin Gradient Establishes Synaptic Lamination in the Vertebrate Visual System. Neuron, 2018, 97, 1049-1062.e6.	3.8	34
34	Angiotropism and extravascular migratory metastasis in cutaneous and uveal melanoma progression in a zebrafish model. Scientific Reports, 2018, 8, 10448.	1.6	33
35	Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3. ELife, 2015, 4, .	2.8	30
36	Dynactin1 depletion leads to neuromuscular synapse instability and functional abnormalities. Molecular Neurodegeneration, 2019, 14, 27.	4.4	29

FILIPPO DEL BENE

#	Article	IF	CITATIONS
37	Characterization of the Calcium Binding Protein Family in Zebrafish. PLoS ONE, 2013, 8, e53299.	1.1	28
38	Asymmetric inheritance of the apical domain and self-renewal of retinal ganglion cell progenitors depend on Anillin function. Development (Cambridge), 2015, 142, 832-9.	1.2	27
39	Precise base editing for the in vivo study of developmental signaling and human pathologies in zebrafish. ELife, 2021, 10, .	2.8	26
40	Interkinetic nuclear migration: cell cycle on the move. EMBO Journal, 2011, 30, 1676-1677.	3.5	25
41	Reelin functions beyond neuronal migration: from synaptogenesis to network activity modulation. Current Opinion in Neurobiology, 2021, 66, 135-143.	2.0	24
42	Mutations affecting retina development in Medaka. Mechanisms of Development, 2004, 121, 703-714.	1.7	20
43	Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nature Communications, 2022, 13, .	5.8	20
44	Direction selectivity in the visual system of the zebrafish larva. Frontiers in Neural Circuits, 2013, 7, 111.	1.4	19
45	Mutations affecting somite formation in the Medaka (Oryzias latipes). Mechanisms of Development, 2004, 121, 659-671.	1.7	18
46	Genetic dissection of the formation of the forebrain in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 673-685.	1.7	17
47	Neuronal Ndrg4 Is Essential for Nodes of Ranvier Organization in Zebrafish. PLoS Genetics, 2016, 12, e1006459.	1.5	17
48	Role of Reelin in cell positioning in the cerebellum and the cerebellum-like structure in zebrafish. Developmental Biology, 2019, 455, 393-408.	0.9	16
49	Reelin Signaling Controls the Preference for Social Novelty in Zebrafish. Frontiers in Behavioral Neuroscience, 2019, 13, 214.	1.0	16
50	Elmo1 function, linked to Rac1 activity, regulates peripheral neuronal numbers and myelination in zebrafish. Cellular and Molecular Life Sciences, 2020, 77, 161-177.	2.4	14
51	Bi-allelic variants in IPO8 cause a connective tissue disorder associated with cardiovascular defects, skeletal abnormalities, and immune dysregulation. American Journal of Human Genetics, 2021, 108, 1126-1137.	2.6	14
52	Evolutionary divergence of locomotion in two related vertebrate species. Cell Reports, 2022, 38, 110585.	2.9	12
53	Zebrafish as a Model for the Study of Live in vivo Processive Transport in Neurons. Frontiers in Cell and Developmental Biology, 2019, 7, 17.	1.8	11
54	Bilateral visual projections exist in non-teleost bony fish and predate the emergence of tetrapods. Science, 2021, 372, 150-156.	6.0	11

FILIPPO DEL BENE

#	Article	IF	CITATIONS
55	UNC45A deficiency causes microvillus inclusion disease–like phenotype by impairing myosin VB–dependent apical trafficking. Journal of Clinical Investigation, 2022, 132, .	3.9	9
56	Clonal analysis of gene loss of function and tissue-specific gene deletion in zebrafish via CRISPR/Cas9 technology. Methods in Cell Biology, 2016, 135, 171-188.	0.5	7
57	FIGNL1 associates with KIF1Bβ and BICD1 to restrict dynein transport velocity during axon navigation. Journal of Cell Biology, 2019, 218, 3290-3306.	2.3	7
58	Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome. Methods in Molecular Biology, 2016, 1451, 31-51.	0.4	4
59	Danionella translucida, a tankful of new opportunities. , 2022, , 409-418.		4
60	Base Editing-Mediated Dissection of the -200 Region of the Î ³ -Globin Promoters to Induce Fetal Hemoglobin and Rescue Sickle Cell Disease and I ² -Thalassemia. Blood, 2021, 138, 562-562.	0.6	1
61	Engineering light-gated glutamate receptors. Biophysical Journal, 2009, 96, 489a.	0.2	0
62	Interkinetic nuclear migration: cell cycle on the move. EMBO Journal, 2011, 30, 2510-2510.	3.5	0
63	Expression of a Barhl1a reporter in subsets of retinal ganglion cells and commissural neurons of the developing zebrafish brain. Scientific Reports, 2020, 10, 8814.	1.6	0
64	In vivo Validation of a Computationally Predicted Conserved Ath5 Target Gene Set. PLoS Genetics, 2005, preprint, e159.	1.5	0